

<u>Kenji Hasegawa</u> (Nagoya University) collaborators: Tomoaki Ishiyama (Chiba U.), Hidenobu Yajima (Tohoku U.), Akio Inoue (Osaka Sangyo U.),

2017年1月7-9日 SKA研究会「銀河進化と遠方宇宙」2017 @ 阿蘇

再電離未解決問題

- •いつはじまりいつ終わったか?
- •時間的空間的にどう進んだか?

• 電離光子源は何だったか?

Question 1: 始まりと終わり

 $z\sim6$ ではほぼ完全電離である.始まりは不明.積分値(τ e)はCMB観測から制限

Question 2: Topology

- ・ 観: 観測的にはほとんど制限なし(clusteringから弱い制限 eg Ouchi+2010).
- ・理: シミュレーションではほとんどがinside-out型を示唆(ただし、光源は 星形成銀河を仮定)

Question 3: 電離光子源

- ・<u>銀河</u>が見えているので最有力候補だが電離光子脱出割合はよくわからない.
- <u>初代星</u>は理論的にはmassiveで再電離に効く可能性があるが観測的には未 検出. =>SKAで検出?田中くんトーク
- Clasicalには<u>AGN</u>はほとんど効かないと思われていたが、Giallongoら (2015)が多くのくらいAGNの存在を示唆(これもSKAで検出?竹内くんトーク).
 Giallogoの観測が本当であればAGNだけで再電離できる可能性(e.g Yoshiura, KH+)=> Topologyにも影響

SKA: 圧倒的高感度で再電離期 HI 21cm線の検出 が期待=>中性水素の空間分布を3次元(x-y-z)情報 を直接得られる.

時間進化はほぼ解決.しかし、Topologyや電離光子 源の解明には他の観測+理論モデルが必要.

輻射輸送計算で再電離過程をシミュレートするこ とで観測と比較しうる理論モデルを構築

Radiative Transfer simulations

Cosmological Radiation Hydrodynamics (RHD) Simulations

- 輻射輸送と流体計算をカップルする為、高分解能計算であれば 輻射による影響下での星形成率、それに伴うIGM電離過程を consinstentに解ける. (e.g., KH, Semelin 2013)
- 計算領域を広げるのは大変なので、典型的電離史計算やPS解 析、バブルカウントなどの統計的研究に不向き

Post-processing Radiative Transfer (RT) Simulations

- 小スケールの情報は潰してしまう為、比較的計算量が軽く、大きな計算領域を取りやすい(Ilievらの仕事が有名).=>大規模サーベイなどの観測と直接比較しやすい
- Feedback効果のようなややこしいものは自動的には考慮されない

- Radiative Transfer of UV photons
- 主に電離、解離光子の輸送(加熱~104K,水素分子=ガス冷却剤の破壊)
- X-rayの場合、以下の近似はそのまま成り立たないこともある

Radiation Hydrodynamics code START <u>SPH with Tree-based Accelerated Radiative Transfer</u> (KH & Umemura 2010) Hydrodynamics(+ Dark Matter Dynamics)

SPH (Smoothed Particle Hydrodynamics)

Creation

 $\overline{C_i}(\overline{T}, n_i)$

 dn_i

dt

Consistently solve Radiative transfer of UV photons from "ALL stellar particles"

e⁻, H⁺, H, H⁻, H₂, H₂⁺, He, He⁺, and He²⁺, dust, metal

Destruction

 $(T, n_i] n_i$

我々の数値計算戦略

小スケールの物理を考慮しつつ大領域の計算を実現し、 観測の予言/比較に使用したい。

光源モデル: 銀河ハロー質量 vs. 電離光子数(= SFRと電離光子脱出割合の積にほぼ比 例), IntrinsicなLya光度の情報、(今の所使っていないが)DustからのIR放射情報 (unresolved) IGMモデル: 加熱でsmoothingされる効果込みの再結合率補正モデル

Which are galaxies responsible for reionization?

Intrinsic ionizing photon Emissivity [Mpc⁻³s⁻¹]
Low-mass range:銀河はたくさんいるが、UV/SN feedbackに敏感

な為、寄与は小さい High-mass range: 大質量ほどSFRが高いが、数自体も少なくこれらが相殺

Which are galaxies responsible for reionization?

<u>Ionizing photon Emissivity with escape fraction</u> 大質量ほどfescが小さく、結果として大質量銀河の寄与はさらに小さく

Galaxies with ~10°M_{sun} are responsible for reionization

今のところ、z=6でのHI fractionやトムソン散乱の
 光学的的厚みなどは観測とconsistent

LAE modeling

Hyper Suprime-Cam (HSC):

=> Large Sample of high-z Lyman Alpha Emitters (LAEs)

Prime Focus Spectrograph (PFS):

=> Resolve Ly $\alpha\,$ profile of each LAE

Theoretical modeling for LAEs

- RHDシミュレーションの結果から直接Lya光子生成量を評価 (the recombination and collisional excitation processes in the ISM) => M_{halo}-Lα relationを取得
- 2. 単純な過程でLy a 輻射をといてintrinsicなprofile形を計算(so far with an expanding cloud model, N_{HI}=10¹⁹cm⁻², v_{outflow}=150km)
- 3. 再電離シミュレーションのIGM情報からすべてのLya candidatesに対してtransmissionを計算し、observableなLAEの情報を取得

without transmission Considering transmission <u>LAEs are clearly obscured by neutral IGM</u>

SKA-JP Square Kilometre Array Japanese Consortium $Ly \alpha LF: Simulation vs. Observation$

- Simulated LFs at z^{-6} -7 are well consistent with obs.
- Observed LF indeed indicates that the mean neutral fraction increases with redshift.

Ly α profiles inform sizes of HII bubbles?

- Lya profileの形(ピークシフト/Skewness)は、LAEが存在する バブルのサイズを反映
- もし観測される場所ごとにprofileの違いが見られれば、
 "Patchy" reionizationの間接的証拠 => PFSに期待

Summary

再電離シミュレーションコードの開発

- => ``長谷川モデル"での計算は可能
- 21cmシグナル解析(PS, bubble count)LAE観測との比較に使用可能
- 21cm-LAE cross correlation解析(SKA, MWA) => 久保田君トーク

今後

- 使い方を簡略化し、好きな銀河モデル(SFR, fesc)、AGNからの放 射込みで計算で誰でも計算できるように調整.
- 電離光子源モデルと観測量との対応(e.g. LAE LF/clustering, HII バブルサイズ分布, HI(³HeII) fine structure line PS, HI21cm-LAE 相互相関)の解明

Obtaining the map of HI fraction

anese Consortiun

• 21cm signal map (that will be obtained by the SKA phase 2) well correlates with the true HI map.

Obtaining the map of HI fraction

- 21cm signal map (that will be obtained by the SKA-2) well correlates with the true HI map.
- Local f_{Lya} seems to correlate inversely with 21cm signal.
 => Will be a nice cross-check for HI mapping

21cm-LAE cross correlation

Preliminary results (by K. Kubota, & S. Yoshiura)

21cm-LAE cross power spectrum

$$\langle \tilde{\delta}_{21}(\mathbf{k_1}) \tilde{\delta}_{\mathrm{gal}}(\mathbf{k_2}) \rangle \equiv (2\pi)^3 \delta_D(\mathbf{k_1} + \mathbf{k_2}) P_{21,\mathrm{gal}}(\mathbf{k_1})$$

$$\Delta_{21,\text{gal}}^2(k) = \frac{k^3}{2\pi^2} P_{21,\text{gal}}(k)$$

21cm-LAE cross correlation function $\xi_{21,\text{gal}}(r) = \frac{1}{(2\pi)^3} \int P_{21,\text{gal}}(k) \frac{\sin(kr)}{kr} 4\pi k^2 dk$

+16, Sobacchi+16,

21cm-LAE cross correlation

Galaxy dominant Scenario

AGN dominant Scenario?

SKA-JP Square Kilometre Array Japanese Consortium

21cm-LAE cross correlation

Galaxy dominant Scenario

AGN dominant Scenario?

Summary

- Constructed the models of galaxies and IGM that include feedback effects.
- Our simulation with the models well reproduces observations (reionization and LAEs).
- Synergy with Subaru will provide fruitful information on the reionization process.

Future Work

- Implement X-ray model (Yoshiura,KH+) in the RT simulation
 => Create 21cm-LAEs cross-correlation templates for various situations
- Synergy SKA(21cm) + Subaru(LAE) + WFIRST(LBGs, AGNs) (discussions with Masami Ouchi & Takahiro Sumi)
 => cross-correlations 21cm & (LAE/LBG/AGN),

backup slides

Snapshot @ z=7.3

Number density n_H [cm⁻³] Gas temperature $T_{g}[K]$

Comparison : RHD model vs. Simple model

- With our C model, reionization proceeds slowly at earlier stages.
- Then catch up later.

- With our f_{esc} model, the averaged f_{esc} evolves from 0.3 to 0.2. Since less massive galaxies with high f_{esc} are dominant at higher redshifts.
- Thus, it becomes extended reionization history.

Modeling LAEs

(e.g., Yajima et al. 2015)

Lya radiative transfer in simplified model : N_{HI}=10¹⁹cm⁻², v_outflow=150 km/s

Evaluate the transmission rate, by performing raytracing along the line of sight through the simulated IGM in the Hubble flow

These quantities are severely affected by radiative feedback.

UV feedback on galaxies and IGM

Photoionization: Heating gas up to $\sim 10^{4}$ K Photodissociation: Decreasing coolants.

on Galaxies Internal (from stars) and external radiation affects SFR and escape fraction (e.g., Susa Umemura 04 Wise & Cen 09, Umemura, KH +12, KH, Semelin 2013).

=> Reduce the number of galaxies during the EoR (e.g., Finlator+13, Wise+14)

Uniform heating case

on IGM

w/o photoheating

w/ photoheating

Clumping factor is decreased by photoheating (e.g., Pawlik+ 09) => averaged clumping factor corresponds to ~2-4.

SKA-JP Models of Galaxies and Clumping factor

ionization degree and decreasing local density.

oanese Consortium

UV(1500Å) Luminosity Function (LF): Sim. vs. Obs.

- Feedback effects suppress SF activities.
- Simulated UVLFs are consistent with observed LFs. (Hence consistent cosmic star formation density.)
- Predict flattening of faint-end LF at M_{UV} -13 ~ -14.