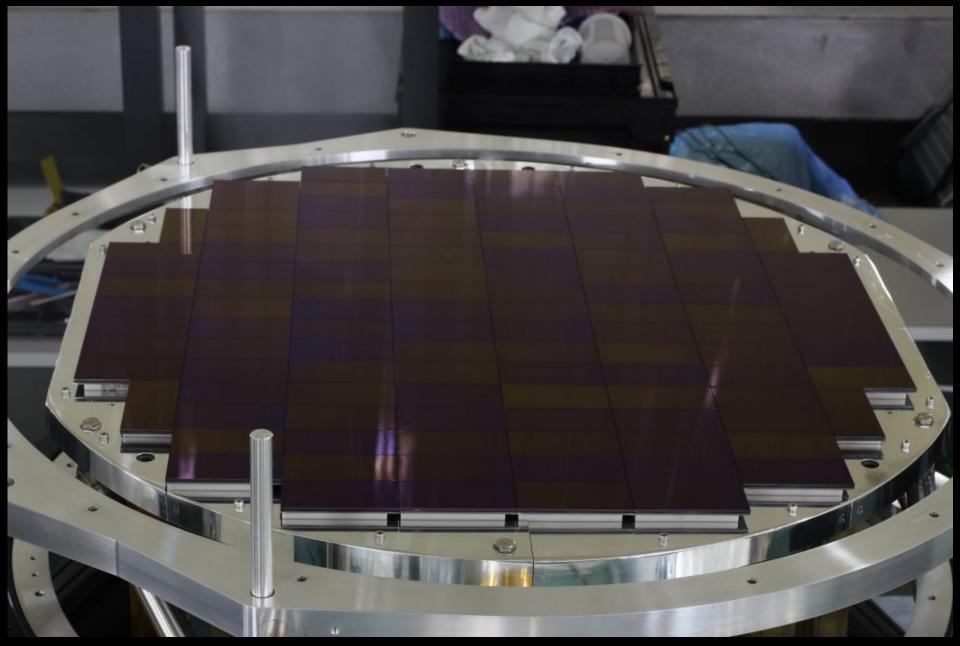
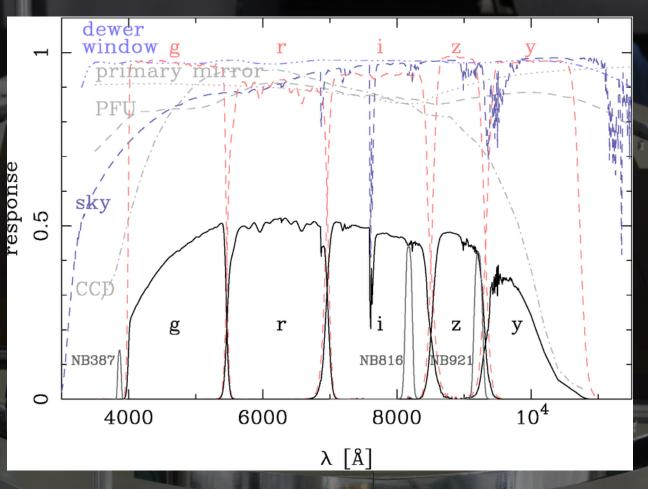
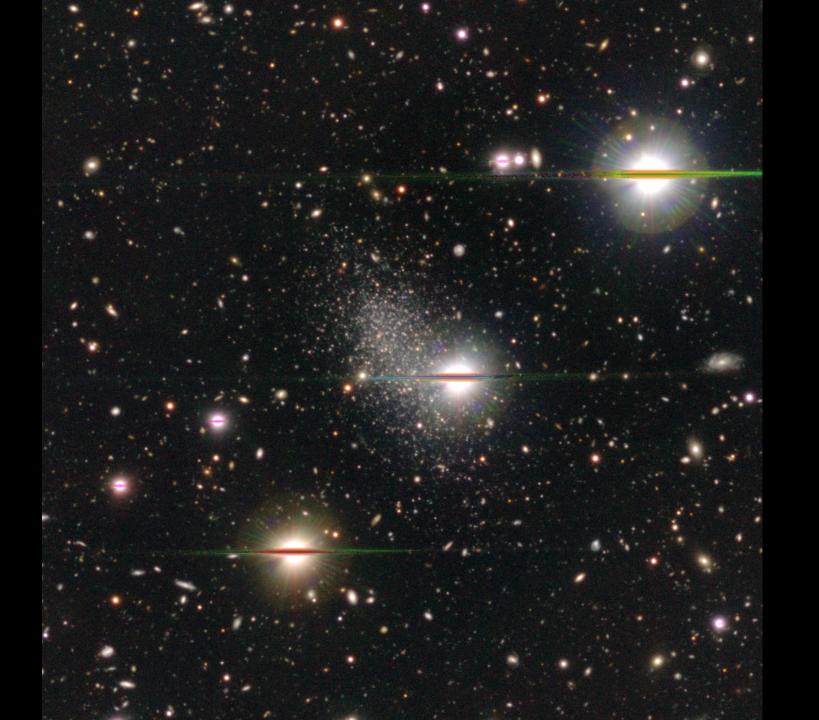

Subaru Strategic Programs with Hyper Suprime-Cam and Prime Focus Spectrograph

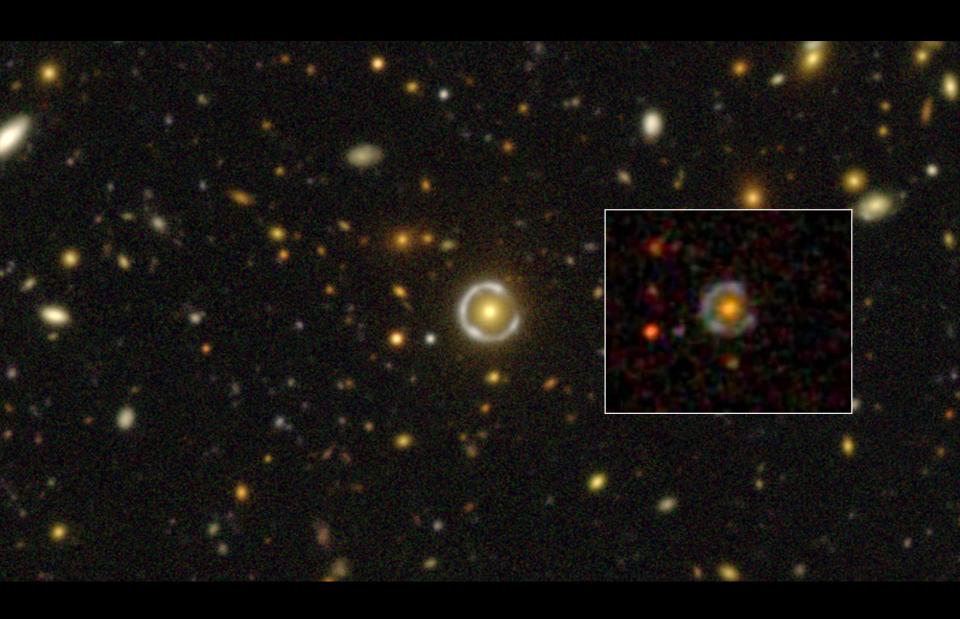
Masayuki Tanaka (National Astronomical Observatory of Japan)



Camera body


Wide-field corrector


104 full depletion science CCDs. 12 CCDs for guiding and focusing.



104 full depletion science CCDs. 12 CCDs for guiding and focusing.

HSC filter system 5 broad-band filters (grizy) and several narrow-band filters.

HSC Strategic Survey

Check out our website: http://hsc.mtk.nao.ac.jp/

Group photo from the HSC collaboration meeting at IPMU in August

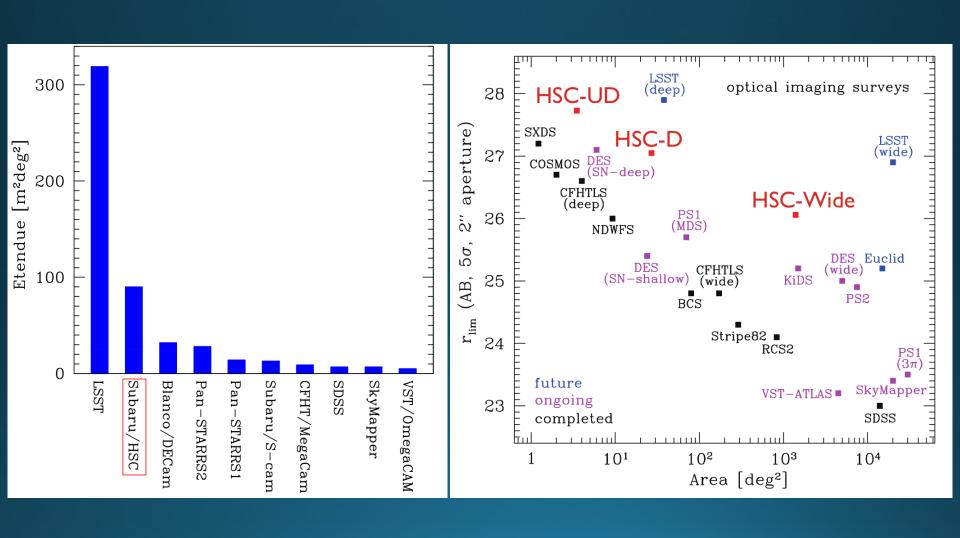
Subaru Strategic Program

International collaboration of **all Japan**, Princeton, and Taiwan.

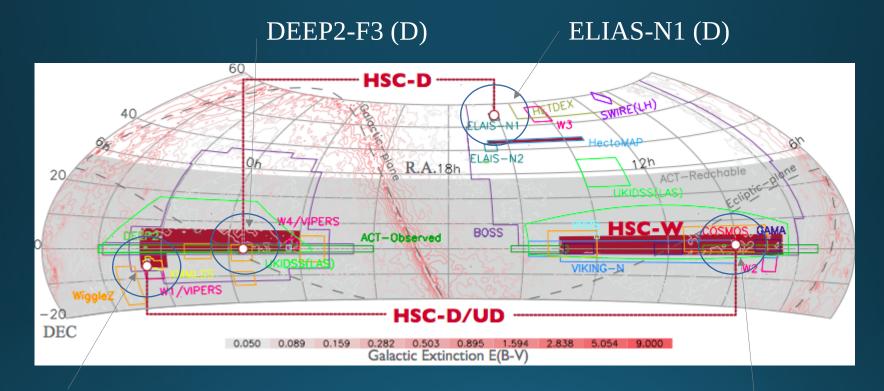
Over 170 scientists are putting efforts in a huge observing program of 300 nights over 5-6 years. The survey started in March 2014 and it is about 30% done.

SSP proposal

Wide-field imaging with Hyper Suprime-Cam: Cosmology and Galaxy Evolution


A Strategic Survey Proposal for the Subaru Telescope

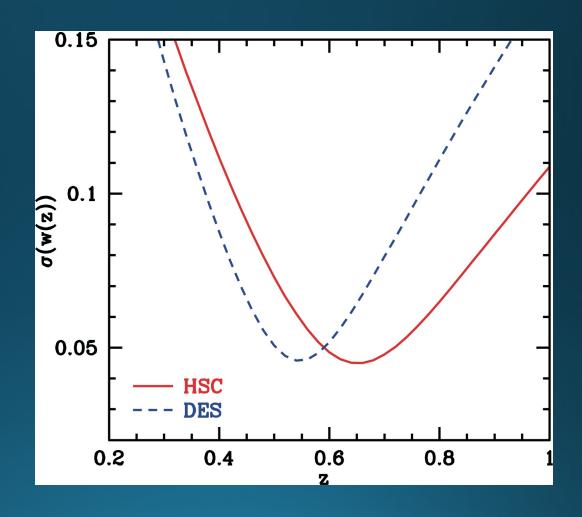
PI: Satoshi Miyazaki (NAOJ) Co-PI: Ikuru Iwata (NAOJ)


The HSC collaboration team¹: S. Abe¹¹, H. Aihara¹²(²), (3), M. Akiyama⁴¹, K. Aoki⁵, N. Arimoto⁺⁵, N. A. Bahcall⁶¹, S. J. Bickerton³, J. Bosch⁶Ւ, K. Bundy¹³, C. W. Chen⁻, M. Chiba¹⁴, T. Chiba⁴ゃ, N. E. Chisari⁶, J. Coupon⁻, M. Doi², M. Enoki⁶⟩ S. Foucaud¹¹⁰, M. Fukugita³, H. Furusawa†⁶, T. Futamase⁴, R. Goto², T. Goto¹¹¹, J. E. Greene⁶, J. E. Gunn¹ſ⁶, T. Hanshimoto², M. Hayashiſ₀, Y. Higuchi², C. C. Hikage¹², J. C. Hill⁶, P. T. P. Ho⁴⁻, B. C. Hsieh¹⁻, K. Y. Huang¹⊓, H. Ikeda¹³, M. Imanishiſ₀, N. Inada¹⁴, A. K. Inoue¹¹⁵, W.-H. Ip¹¹, T. Ito⁵₀, K. Iwasawa¹⁶, M. Iye⁶∘, H. Y. Jian¹т², Y. Kakazu¹®, H. Karoji³, N. Kashikawaſ₀, N. Katayama³, T. Kawaguchi¹⁰, S. Kawanomoto⁵₀, I. Kayo²₀³, T. Kitayama²₀³, G. R. Knapp⁶₀, T. Kodama¹₀, K. Kohno², M. Koike⁶¸ E. Kokubo⁶¸, M. Kokubo²², Y. Komiyama⁵₀, A. Konno², Y. Koyamaſ₀, C. N. Lackner³, D. Langſ₀, A. Leauthaud†³, M. J. Lehner¹¬, K.-Y. Lin¹¬, Y. -T. Lin¹¬, Y. -T. Lin¹¬, C. P. Loomisſ₀, R. H. Lupton†ſ₀, P. S. Lykawka²¹¹, K. Maeda³, R. Mandelbaum†²², Y. Matsudaʻſ₀, K. Matsuoka¹³, T. Morokuma¹², H. Murayama¹³, K. Nagamine²¹, T. Nagao¹², S. Nagataki²³, Y. Naito², K. Nakajima²², F. Nakataſ₀, H. Nakayaſ₀, T. Namikawa²², C.-C. Ngeow¹¹, T. Nishimichi³, H. Nishiokaĵ¸, A. J. Nishizawa†³, K. Nomotoſ₃, M. Ogur†³, A. Oka²², N. Okabeſ¬, S. Okamuto²², S. Okamuta²²₀, J. Okumaſ₀, N. Sugityama²², P. P. Priceſ₀, R. Quimbyſ³, C. E. Rusu²², S. Saito²², T. Saito³, Y. Saito¹³, N. Saito¹³, N. Sugiyama²², D. N. Spergel⁺(ſ₀, S.), M. Sato¹², T. Takataſ³, N. Sugiyama²², D. S. Chimura²³, S. Okumura²²², Y. Dosilverman³, D. N. Spergel⁺(ſ₀, S.), M. Okabeſ¬, S. Okamoto²², S. Okamura²², D. S. Saito²³, T. Saito³³, N. Satous³³, N. Sugiyama²², D. Sulimaya³³, C. E. Rusu²², K. Tadaki², M. Tanaka⁴³, R. Takahashiſ³), S. Takahashiſ⁵, T. Takataſ⁵, T. T. Takeuchiſ², N. Tamura³, M. Tanakaſ⁵, M. Tanaka¹³, M. Tanaka⁴³, N. Tanaka⁴³, N. Tanaka⁴³, N. Tanaka³¸, N. Tanaka³¸, N. Tanaka³¸, N. Tanaka³¸, N. Toninaga³, J. Toshikawa³³, S. Y. Wangʻ¬, W.-H. Wangʻ¬, T. Yamada⁴¸, Y. Yamada¹¸, K. Umetsu¹¬, Y. Urata†¹, Y. Utsumi¹₀, B. Vulcan

Survey power

Survey fields

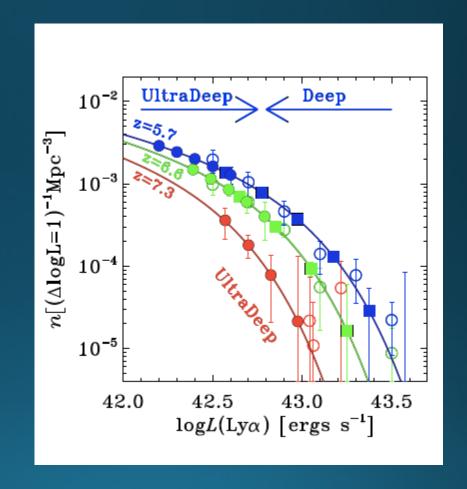
SXDS (UD) XMMLSS (D)


- Full overlap with SDSS
- Low dust extinction
- Wide R.A. range
- Overlap with other NIR, spec, etc surveys.

COSMOS (UD) E-COSMOS (D)

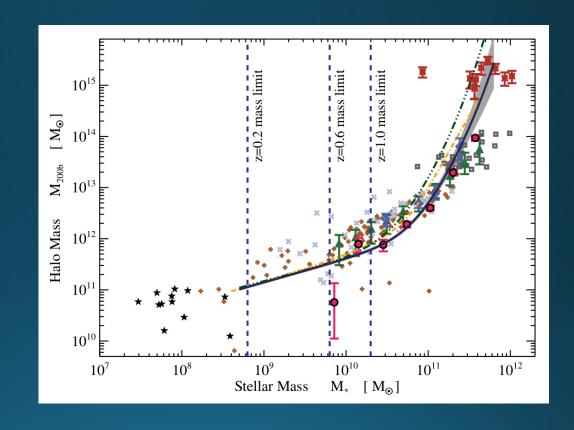
Science goals

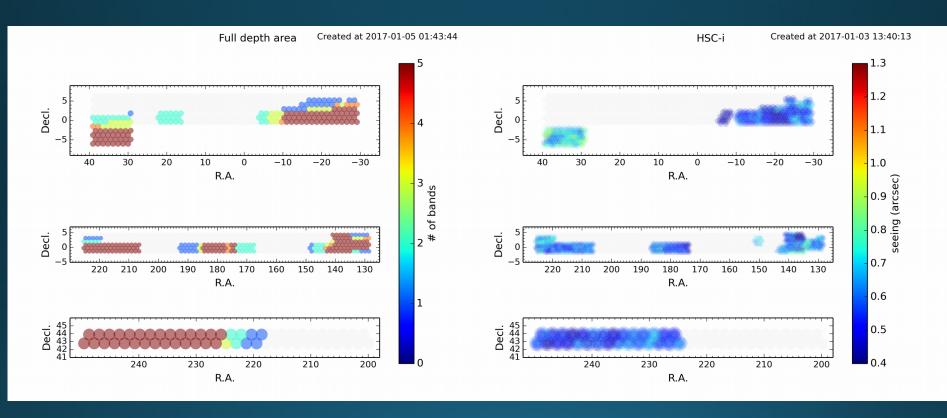
- Weak-lensing cosmology
- High-redshift galaxies
- Galaxy evolution
- Clusters of galaxies
- Transient objects
- Solar system bodies
- AGN/QSO
- Milky Way
- Strong lensing


...

Science goals

- Weak-lensing cosmology
- High-redshift galaxies
- Galaxy evolution
- Clusters of galaxies
- Transient objects
- Solar system bodies
- AGN/QSO
- Milky Way
- Strong lensing


...


Science goals

- Weak-lensing cosmology
- High-redshift galaxies
- Galaxy evolution
- Clusters of galaxies
- Transient objects
- Solar system bodies
- AGN/QSO
- Milky Way
- Strong lensing

...

Survey progress

~250 square degrees surveyed so far. Note the excellent seeing!

Figure courtesy: Yasuda-san.

hscMap View Layer Bookmarks Dataset Develop Window Help

First public data release from HSC

We are going to make the first public data release in February 2017!

The release will include data taken up to Nov 2015 and the processed images and catalogs as well as raw data will be made available to the community. We will release ~100 square degrees of full-color full-depth data.

Advanced Options

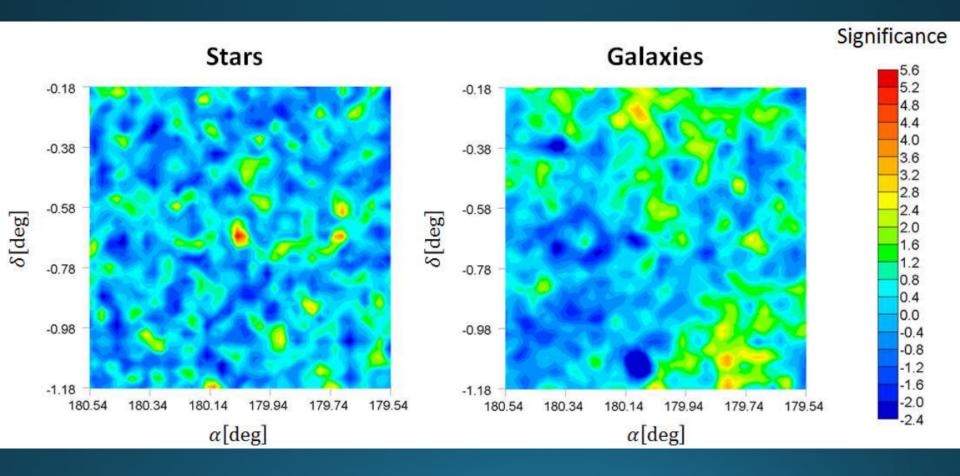
User-friendly web interfaces make it easy for you to retrieve the data. A super useful googleMap-like image browser will also be

extremely useful.

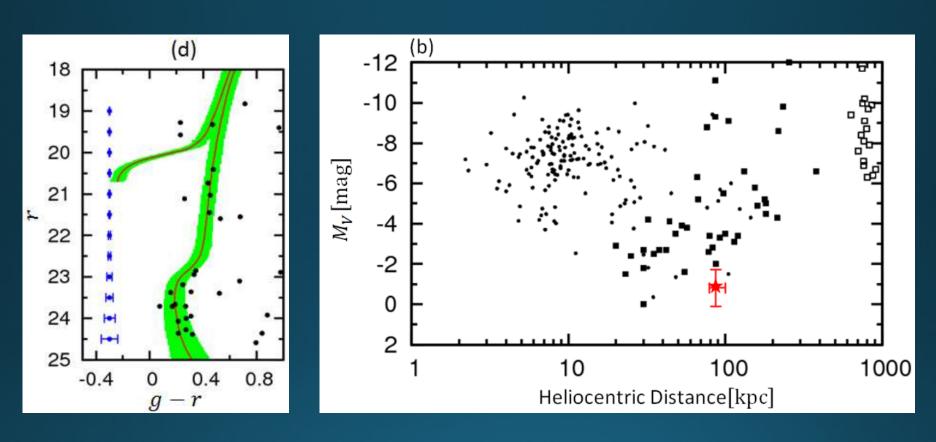
Stay tuned!

Inimations: 0

position: n=241.567616, c =55.449038

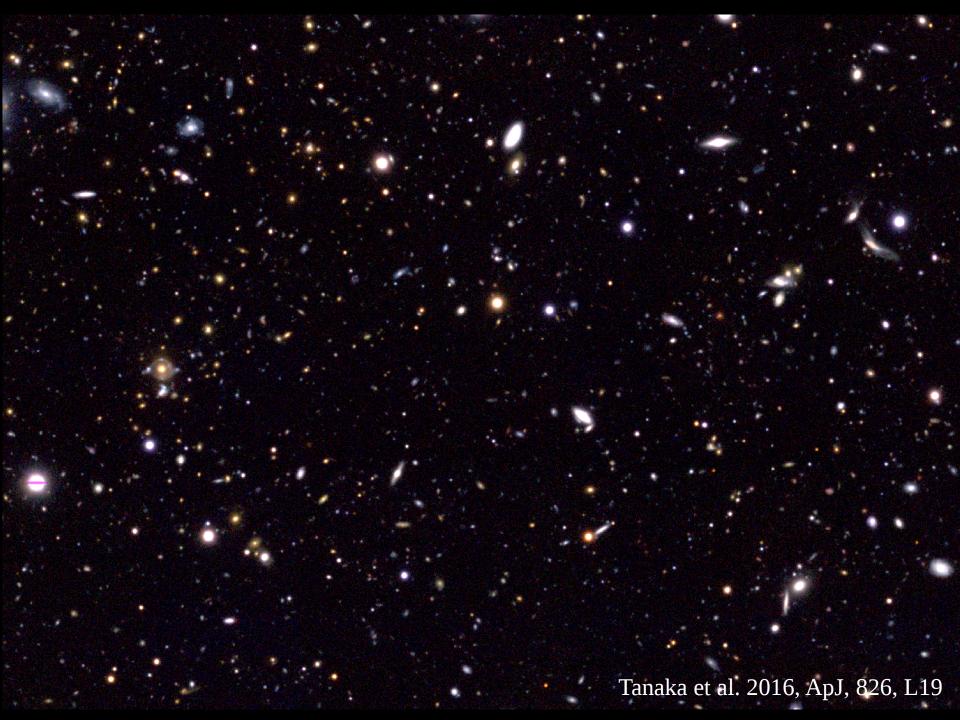

pos60: a:16:0676.228, d:+55:26:56.537

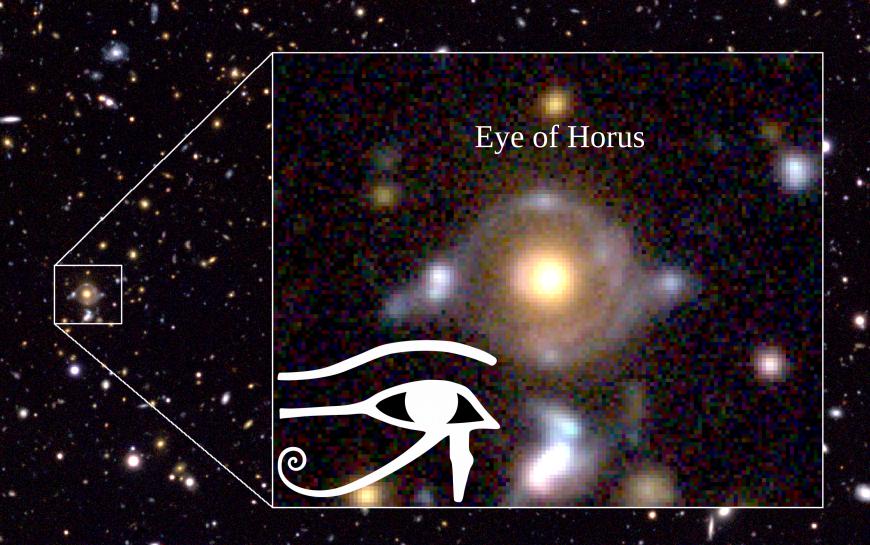
extures: 290

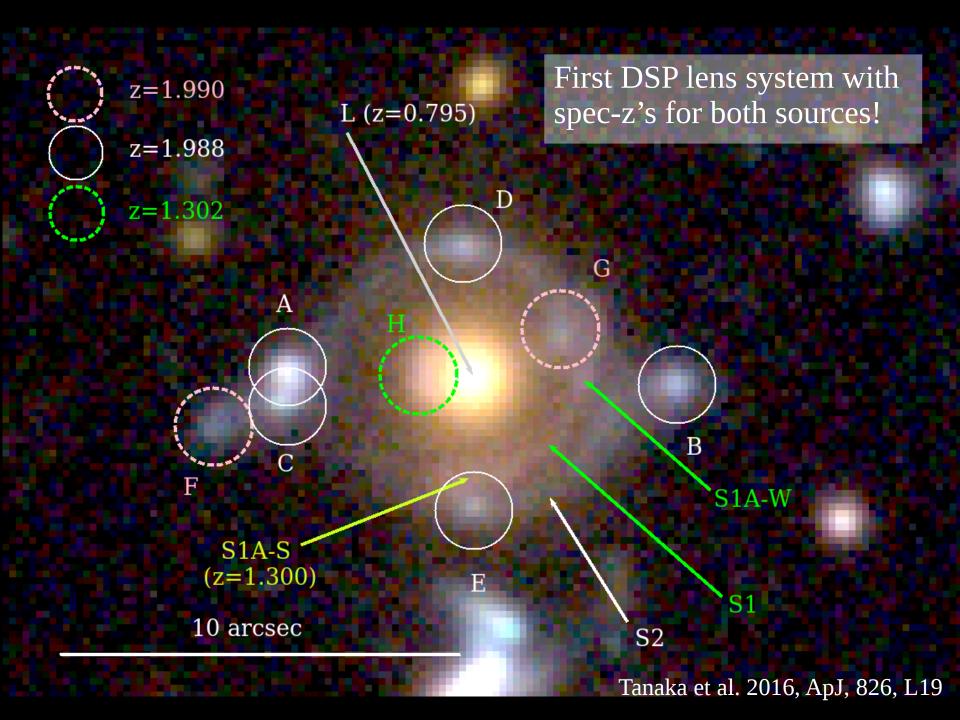

Early Science Results

A special PASJ issue is being planned for the first year science papers.

Virgo I – a new dwarf satellite of the Milky Way

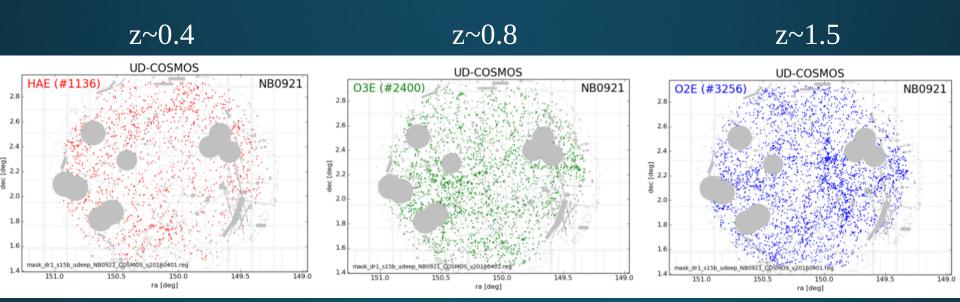

Virgo I – a new dwarf satellite of the Milky Way




Virgo I is one of the faintest dwarf galaxy located at ~90kpc, demonstrating the power of the HSC survey.

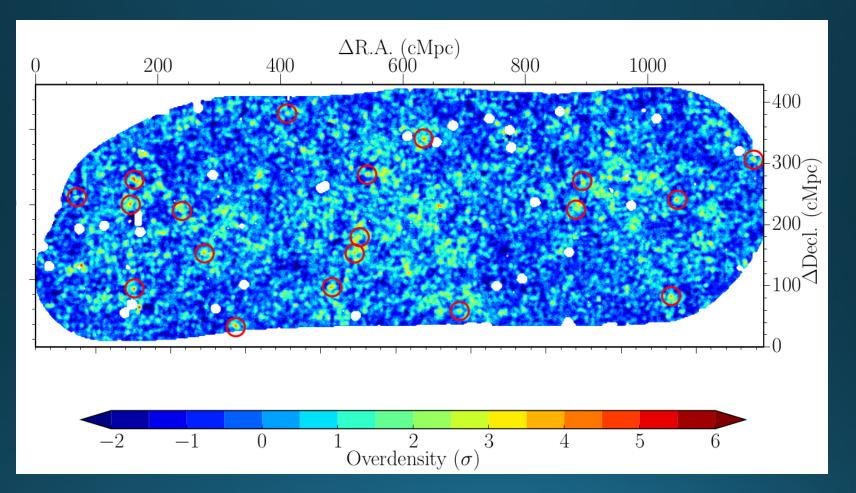
Ultra Diffuse Galaxies

Tanaka et al. in prep.


Lens models

We broadly reproduce the main features of the system using two independent codes. But, we need a subhalo to reproduce the A+C splitting.

The lens is likely a cluster BCG. Need to incorporate environment effects.


Emission line objects

With the narrow-bands, we can detect emission line objects in narrow redshift slices to trace LSS as well as to study effects of LSS on galaxy evolution.

Hayashi et al. in prep.

Proto-clusters traced by LBGs

Over 100 proto-cluster candidates so far. Number density $\sim 10^-7$ Mpc $^-3$. A preliminary clustering analysis suggests r_0 $^-30$ Mpc.

...and many more!

Work in progress on

- ▶ Very massive galaxies
- Ultra Diffuse Galaxies (UDGs)
- Green peas
- Very bright Lyman alpha emitters
- Very bright Lyman break galaxies
- Solar system bodies
- Dust Obscured Galaxies (DOGs)
- QSO-galaxy cross correlation
- Hosts of radio galaxies
- Galaxy-scale strong lensing
- Cluster-scale strong lensing
- Stellar tidal streams around nearby galaxies
- ➡ Blue Horizontal Branch stars to probe the MW halo
- etc, etc, etc...

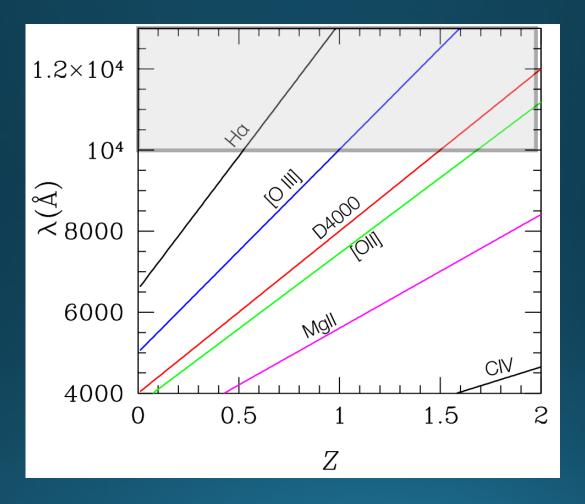
PFS-Galaxy Survey

Annual collaboration meeting around Dec WG chair + software meeting every half a year

Extended collaboration

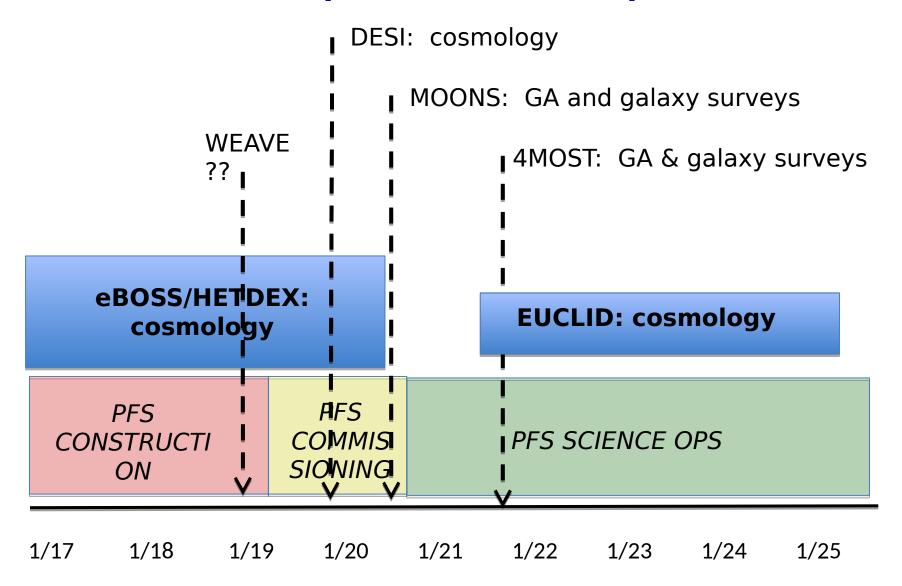
From Tamura-san's slide, a very old version

New members:


- Chinese PFS Participation Consortium
- MPE
- Northeastern Consortium?
 - Columbia
 - Connecticut
 - Dartmouth
 - Illinois
 - UMass
 - Pittsburgh
 - Tufts

PFS Instrument Parameters

Daines France Instance and						
Prime Focus Instrument						
~1.4 deg (hexagonal - diameter of circumscribed circle)						
~1.2 deg ²						
2.8						
127 μm (1.12 arcsec at the FoV center, 1.02 arcsec at the edge)						
8 mm (90.4 arcsec at the FoV center, 82.4 arcsec at the edge)						
9.5 mm diameter (107.4 arcsec at the FoV center, 97.9 arcsec at the edge)						
~30 arcsec						
~60-70 sec. [TBC]						
Science fibers		Fixed fiducial fiber				
2394		96				
~2000 deg ⁻² / ~0.6 arcmin ⁻²						
6						
~5.1 arcmin² per one camera						
r'~20.0 AB mag for S/N~30 (100) in 1 (10) sec. exposure						
Spectrograph						
Blue -	Red		NIR			
	Low Res.	Mid. Res.	MIIX			
	~1.4 deg 127 μm (1.12 8 mm (90.4 9.5 mm diameter (Science 23: r'~20.0 A Spece	~1.4 deg (hexagonal - diam ~1.2 127 µm (1.12 arcsec at the FoV 9.5 mm diameter (107.4 arcsec at the ~30 a ~60-70 s Science fibers 2394 ~2000 deg-2 r'~20.0 AB mag for S/N~30 Spectrograph Blue	2.8 127 μm (1.12 arcsec at the FoV center, 1.02 arcsec 8 mm (90.4 arcsec at the FoV center, 82.4 arcsec 9.5 mm diameter (107.4 arcsec at the FoV center, 97.9 ~30 arcsec ~60-70 sec. [TBC] Science fibers Fixed fide 2394 99 ~2000 deg-2 / ~0.6 arcmin-2 6 ~5.1 arcmin² per one camera r'~20.0 AB mag for S/N~30 (100) in 1 (10) sec. Spectrograph Blue Red			


1 3 1					
Spectral arms	Blue	Red		NIR	
		Low Res.	Mid. Res.	NIIX	
Spectral coverage	380 - 650 nm	630 - 970 nm	710 - 885 nm	940 - 1260 nm	
Dispersion	~0.7 Å/pix	~0.9 Å/pix	~0.4 Å/pix	~0.8 Å/pix	
Spectral resolution	~2.1 Å	~2.7 Å	~1.6 Å	~2.4 Å	
Resolving power	~2300	~3000	~5000	~4300	
Spectrograph throughput (3)	~58% (@500nm)	~55% (@800nm)	~52% (@800nm)	~52% (@1100nm)	

Unique instrument for z~1 galaxy science

PFS covers all the important emission/absorption features of galaxies around $z < \sim 1$. An ideal instrument to follow-up ALPACA sources.

The Competition (updated)

Proposal writing

Each WG submits a science document summarizing

- (1) science objectives
- (2) survey design and sample selection
- (3) physical parameters to be measured
- (4) feasibility

by June 1st, 2017.

The galaxy WG has to submit 4 smaller ones:

- (a) LAEs
- (b) LBGs
- (c) IGM
- (d) rest-frame optical at z=0.8-2

All the documents will be abstracted into the first complete SSP proposal by Dec. 2017.

Subaru Telescope

National Astronomical Observatory of Japan

650 North A'ohoku Place, Hilo, Hawaii 96720, U.S.A.

Dear PFS Collaborators,

It was a great pleasure to meet you at the PFS collaborators meeting in Taipei in December 2014. At the meeting, I enjoyed learning how evey one of you has been contributing to the PFS project.

As you remember, I repeatedly emphasized that the three pillars of the future of the Subaru telescope are:

Hyper Suprime-Cam (HSC)
Prime Focus Spectrograph (PFS)
ULTIMATE-Subaru (Ground Layer Adaptive Optics + Wide-field IR instruments)

Among them, HSC is already being used as a facility instrument, while ULTIMATE is still in the planning stage. PFS is the next instrument to be completed and I am very excited to see the progress in its development. The combination of HSC and PFS exploits the very unique features of the Subaru telescope, namely its large aperture of 8.2m with the very large field of view of 1.5 degrees. I envision a long-term future for the Subaru telescope with these instruments, especially so in the era of TMT and LSST.

I truly appreciate your effort in designing and constructing the PFS instrument, as well as raising funds for it. You have made substantial contributions already to the project and all of us at the Subaru Telescope are delighted to start working with you to make it available to the community.

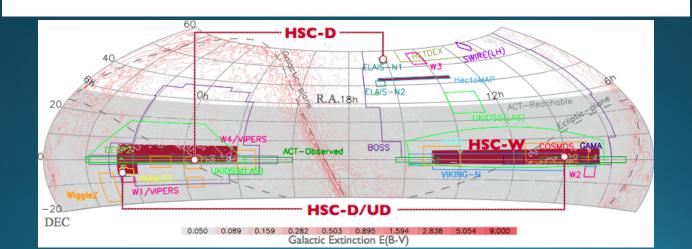
Given the substantial contributions you have already made, and the uniqueness and anticipated power of the instrument, it is obvious that we should use PFS for a large-scale survey project. Using targets selected from the currently running HSC Subaru Strategic Program (SSP), PFS will follow up with spectroscopy for three major science programs, cosmology, galaxy evolution, and galactic archaeology. All of you should be partners in the survey.

I cannot imagine that the survey using PFS should be less than 300 nights, and we have recently initiated discussions with the Subaru users community as well as the Subaru Advisory Committee (SAC) whether we could increase the number of nights for such a survey. Even though the final approval of a PFS SSP depends on the outcome of an external review of the proposal, I believe it is safe to say that a 300-night survey is a near certainty, and an expanded survey of up to 360 nights will be considered seriously if there is a clear science case.

Survey design is still under debate...

Resulting Survey Design (somewhat old version)

 25 deg^2


~9 deg²

~200k color- selected galaxies with 0.5 < z < 1.5 (2hr exp)

~170k color- selected galaxies with 1 < z < 2 (3 hr exp)

~82k drop-out selected galaxies with 2 < z < 6 (3 hr exp)

~20k LAEs with z=2, 6 (5hr exp)

Summary

- The HSC survey is a 300-night survey at the Subaru Telescope started about 2.5 years ago.
- The survey is 35% done as of today. We are making good progress!
- Check out our website for the details of the survey, http://hsc.mtk.nao.ac.jp/
- A number of early science papers have been published already; from the discovery of a new MW dwarf galaxy to the discovery of high-z QSOs.
- PFS science operations are likely to start around ~S20B.
- The galaxy survey is still under discussion...