ALMAで見るz>6の銀河の ダスト進化

Hiroyuki Hirashita (平下 博之)

Wei-Chen Wang Kuan-Chou Hou (ASIAA, Taiwan) Wang et al. 2017, MNRAS,465, 3475

Submm Observation

Cosmic Infrared Background

Toward Galaxies in the Epoch of Reionization (z > 6)

LBG at z = 7.5 Detected by ALMA

Watson et al. (2015) at z = 7.5 (lensed LBG)

Stellar mass ~ $2 \times 10^9 M_{\odot}$ SFR ~ $10 M_{\odot}/yr$

Source of Dust at z > 6

3. Dust Enrichment at High Redshift

Analysis Using Dust Evolution Model

Wang, Hirashita & Hou (2016)

(1) One-zone model including dust formation (stellar sources + accretion) and destruction (SNe).
 (2) Dust emission is calculated consistently with the stellar

radiation field and dust mass.

Constraint from the *z* **= 7.5 LBG**

Constraint from the *z* **= 7.5 LBG**

ALMA Detection of LBGs at *z* > 6 Requires...

Wang, Hirashita, & Hou (2016)

(1) Very efficient grain growth by accretion (10–100 times more efficient than nearby galaxies) if their metallicities are $\sim 0.1 Z_{\odot}$ (Mancini et al. 2015);

(2) They are solar-metallicity objects; or

(3) Very high condensation efficiency in stellar ejecta.

Toward SKA (Era)

(1) Deeper ALMA observations.

Relation to H I.

(2) Development of dust evolution models and radiation transfer codes. → Escape fraction of ionizing photons.
(3) Relation with gas components ([C II], [O III], CO).

Theoretical modeling

Inoue et al. (2016)

Thank you.

SFR Traced by Dust Emission

Star formation rate traced by FIR dust emission becomes more and more important as we go to the epoch of SFR peak.

A Lot of Dust at z > 5(10⁹ yr after the Big Bang)

-100

LBGs at $z \sim 6$

Willott et al. (2015)

Color: [C II] 158 µm, Contour: dust continuum Cross: center of NIR

Poor Dust Content in Lya Emitters

"Himiko" Giant Ly α Emitter at z = 6.6(age ~ 100–300 Myr)

Ouchi et al. (2013)

Inefficient FIR emission compared with nearby galaxies.

LBGs at z = 5-6

