

MWA超低周波電波のデータ解析

SHINTARO YOSHIURA

B. Pindor, C.M. Trott, K. Takahashi and MWA EoR team

All results are preliminary

「銀河進化と遠方宇宙」2019 (第五回) @ 神奈川大学 Using MWA presentations template

Credit : K Hasegawa

Hyperfine structure : energy difference due to the spins of proton and electron.

An atom emits a photon with a wavelength of 21cm via the spin-flip transition.

During the EoR and the CD, the 21cm line is a good tracer of the IGM.

21cm brightness temperature

$$\delta T_b \propto x_{\rm HI} (1 + \delta_{\rm m}) (1 - T_{\rm CMB} T_S^{-1})$$

Global signal

21cm Global signal :

$$T_{21} \propto x_{\rm HI} (1 - T_{\rm rad} T_{\rm S}^{-1})$$

EDGES is designed for measuring the 21cm emission and absorption.

Too strong absorption

Measured δ Tb is -500 mK at z=17, and T_K need to be less than 3.2K. However, the minimum T_K should be 6 K at z=17 in standard cosmology.

Figure 2 | Best-fitting 21-cm absorption profiles for each hardware case.

New physics? Need more data

EDGES low band : detection a powerful absorption

Inspired papers : Barkana 2018, Fialkov+2018, Berlin+2018, Fraser+2018, Hirano&Bromm 2018, SY +2018, Minoda+2019, etc

- \cdot early decouple of gas and radiation ?
- Hotter CMB ?
- High baryon density ?
- Radio background ?
- Did some exotic physics cool the HI gas ?
 - > baryon and dark-matter interaction? Barkana 2018, Nature Letter.

We need to observe the frequency using other instruments ! e.g. Power spectrum with interferometers

Statistical approach

- · Ideally, 21cm line will be imaged.
- Statistical analysis is required to increase sensitivity of ongoing telescopes.

Instrument : MWA phase I (128 tiles) Bandpass : 74-100MHz (18 > z > 13) Observation time : ~5hours

Showing foregrounds and systematics Calculating power spectrum and bispectrum Predict future detectability

Credit: Natasha Hurley-Walker

Software : RTS (calibration) : CHIPS (power spectrum estimator)

Objectives · detection of 21cm power spectrum at Cosmic Dawn

- \cdot the study MWA systematics and foreground at ultralow
- validation of EDGES result

Data property

Obstacles at ultralow frequency

- \cdot powerful thermal noise
- high RFI contamination
- \cdot (too) bright foregrounds
- \cdot (too) wide field of view

EoR1 field at ultralow band

Phase center : EoR1 (RA,Dec) = (4h,-30deg)

Beam size : 40*40 deg²

Fornax A

- extended source
- \cdot modeling with shape-let

Pictor A

- extended source
- \cdot modeling with 2D gaussian

Results of point source subtraction Quiet ionosphere data

Ionosphere could have influence on subtraction of point sources

Obsid: 1098295824 (2014-10-25 18:10:08.000) Metric: 2.6176

Results of point source subtraction Active ionosphere data

Ionosphere could have influence on subtraction of point sources

Obsid: 1095452408 (2014-09-22 20:19:52.000) Metric: 9.8960

EoR1 field at ultralow band

Phase center : EoR1 (RA,Dec) = (4h,-30deg)

Beam size : 40*40 deg²

calculate power spectrum using the data after point source subtraction.

Using ultraCHIPS, good ionosphere, lower RMS

1D power spectrum

Choose three vector in Fourier space

To compare the data, we perform the 21cmFAST

Upper limits : 10⁷ mK² Need to remove foreground (1~2 orders) and add more data

Bispectrur

Assumptions

- · MWA Phasell
- 1000hours observation
- FGRM 2 orders of magnitude

MWA can measure the bispectrum at high band

MWA might validate the EDGES results

Averaged Bispectrum, foled $k = 0.13 Mpc^{-1}$ 10¹⁸ fid edges noheat 10¹⁶ EDGES 1014 3[mK³Mpc⁶] 1012 10^{10} 10⁸ 10 12 14 16 6 8 18 7

Summary

Analyzing the MWA Ultralow data (75-100MHz) Objectives

Deep analysis on UL data

validation of the EDGES strong absorption

Correct limits

Power spectrum 107 mK² at 0.1 Mpc⁻¹

Bispectrum 10²⁴ mK³Mpc⁶ at 0.1 Mpc⁻¹

MWA Phase II might validate the EDGES absorption

Requirements

observation of 1000hours

foreground removal more than 2 orders of magnitude in Kelvin Next steps

Using more data,

Attempting to foreground removal,

Selecting clean data

Note : all results are preliminary

Using ultraCHIPS, good ionosphere, lower RMS

1D power spectrum

R.M.S of visibility

Before calculate power spectrum, check the visibility r.m.s

Weird data should be removed

「銀河進化と遠方宇宙」2019 (第五回) @ 神奈川大学

log(rms)

3.2

3.0

2.8

2.6

2.4

2.2

2.0

"cthulhu" (C.Jordan+2017)

: python software for ionosphere analysis

Ionosphere offset is measured by comparison the observed position of point sources and the position listed in radio catalogue

Data quality

For now, choose data with

- quiet ionosphere
- lower r.m.s

gain water roof?

Plot before after

Click to add title

- Click to add text
 - Text
 - Bullet 1
 - Bullet 2
 - Bullet 3

Image credit: John Goldsmith, 2012

Partner Institutions

