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Overview      

©ESA

CMB

LSS
M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia.

sample �coh
low-z 0.12
SDSS-II 0.11
SNLS 0.08
HST 0.11

Table 9. Values of �coh used in the cosmological fits. Those val-
ues correspond to the weighted mean per survey of the values
shown in Figure 7, except for HST sample for which we use the
average value of all samples. They do not depend on a specific
choice of cosmological model (see the discussion in §5.5).
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Fig. 7. Values of �coh determined for seven subsamples of the
Hubble residuals: low-z z < 0.03 and z > 0.03 (blue), SDSS
z < 0.2 and z > 0.2 (green), SNLS z < 0.5 and z > 0.5 (orange),
and HST (red).

may a↵ect our results including survey-dependent errors in es-
timating the measurement uncertainty, survey dependent errors
in calibration, and a redshift dependent tension in the SALT2
model which might arise because di↵erent redshifts sample dif-
ferent wavelength ranges of the model. In addition, the fit value
of �coh in the first redshift bin depends on the assumed value
of the peculiar velocity dispersion (here 150km · s�1) which is
somewhat uncertain.

We follow the approach of C11 which is to use one value of
�coh per survey. We consider the weighted mean per survey of
the values shown in Figure 7. Those values are listed in Table 9
and are consistent with previous analysis based on the SALT2
method (Conley et al. 2011; Campbell et al. 2013).

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.
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Fig. 8. Top: Hubble diagram of the combined sample. The dis-
tance modulus redshift relation of the best-fit ⇤CDM cosmol-
ogy for a fixed H0 = 70 km s�1 Mpc�1 is shown as the black
line. Bottom: Residuals from the best-fit ⇤CDM cosmology as
a function of redshift. The weighted average of the residuals in
logarithmic redshift bins of width �z/z ⇠ 0.24 are shown as
black dots.

6.1. ⇤CDM fit of the Hubble diagram

Using the distance estimator given in Eq. (4), we fit a ⇤CDM
cosmology to supernovae measurements by minimizing the fol-
lowing function:

�2 = (µ̂ � µ⇤CDM(z;⌦m))†C�1(µ̂ � µ⇤CDM(z;⌦m)) (15)

with C the covariance matrix of µ̂ described in Sect. 5.5 and
µ⇤CDM(z;⌦m) = 5 log10(dL(z;⌦m)/10pc) computed for a fixed
fiducial value of H0 = 70 km s�1 Mpc�1,13 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the four nuisance param-
eters ↵, �, M1

B and �M from Eq. (4). The Hubble diagram for
the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find
a best fit value for ⌦m of 0.295 ± 0.034. The fit parameters are
given in the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant

13 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1

B).
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Constraint on CMB

1.0

0.8

0.6

0.4

0.2

0.0

r 0
.0

02

0.90 0.95 1.00 1.05
ns

1.0

0.8

0.6

0.4

0.2

0.0

r 0
.0

02

0.90 0.95 1.00 1.05
ns

WMAP WMAP + SDSS

WMAP + 2dF WMAP + CBI + VSA
6050 6050

6050 6050

Figure 3.2: (From Ref. [117]) Joint two-dimensional marginalized contours (68% and 95% confidence
levels) for inflationary parameters (r0.002, ns). r0.002 = 16ϵ(= 8r) represents a tensor-to-scalar ratio at
k = 0.002/Mpc. In this figure, they assume a power-law primordial power spectrum, dns/d ln k = 0.
(Upper left) WMAP only. (Upper right) WMAP+SDSS. (Lower left) WMAP+2dFGRS. (Lower right)
WMAP+CBI+VSA. The dashed and solid lines show the range of values predicted for monomial infla-
ton models with 50 and 60 e-folding number of inflation, respectively. The open and filled circles show the
predictions of m2φ2 and λφ4 models for 50 and 60 e-folding number of inflation. The rectangle denotes the
scale-invariant Harrison-Zel’dovich-Peebles (HZ) spectrum (ns = 1, r = 0). From this figure, it is noted that
the current data prefers the m2φ2 model over both the HZ spectrum and the λφ4 model.
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Inflaton with a non-minimal coupling

Takahashi, Tenkanen(2018)
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Figure 1. Einstein frame potentials for the cases with the Jordan frame potential assumed as
V (�) = (m2

/2)�2 (left) and V (�) = (�/4)�4 (right). Those for the metric and Palatini cases are
shown for several values of ⇠. Notice that the metric and the Palatini cases are almost identical for
the quadratic potential.

constant exponentially fast and is therefore suitable for slow-roll inflation (see the right panel
of Fig. 1). As we will show, the assumption that ⇠ � 1 is typically justified, as for quartic
potential the amplitude of the curvature perturbation has the correct value only for large ⇠,
given that the quartic self-coupling of the inflaton field is not very small, � & O(10�10).
However, because scenarios where such small couplings are dynamically generated do exist
(see e.g. [85]), in the following we will evaluate the potential numerically, without relying on
analytical approximations which are shown here only for illustration.

Let us then discuss the case where the Jordan frame potential is quadratic in the field,
i.e. V (�) = m

2
�
2
/2. We will show that realizing successful inflation requires in this case

⇠ ⌧ 1, regardless of the choice of gravitational degrees of freedom. We see that in this limit
the second term in Eq. (3.5) becomes negligible and the metric theory asymptotes its Palatini
counterpart. The Einstein frame potential then becomes in both cases

U
(2)(�) =

m
2

2

�
2(�)

⌦4(�(�))
=

m
2
M

2

P

2⇠

sinh2
�p

⇠�/MP

�
�
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⇠�/MP

��2 (3.9)
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2
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2
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�
4 +O(�6),

from which one can see that even though there is no plateau in this case, the non-minimal
coupling still does have a flattening e↵ect on the potential at large � (see the left panel of
Fig. 1). However, we again emphasize that the above expressions are only for illustration
and that in our numerical analysis we compute the inflationary observables using the exact
potential in the Einstein frame. Also, note that in this paper � = S in the case of quadratic
potential, i.e. we do not study cases where the Higgs mass term would dominate.

Finally, we make a remark about quantum corrections, which in the case of plateau
potentials have been shown to be mostly insignificant during inflation (for recent works see
e.g. [33, 58, 86–88] and [89–95] for Higgs inflation specifically) but which might a↵ect the
potential in the regime where reheating occurs [93, 95]. While such e↵ects may be able to
change our results to some extent, quantifying their exact e↵ect is not only di�cult but
also certainly model-dependent. In this paper our aim is to study inflationary dynamics at
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Towards distinguishing variants of
non-minimal inflation
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Abstract.We study models of inflation where the scalar field � that drives inflation is coupled
non-minimally to gravity via ⇠�

2
R, or where the gravity sector is enlarged by an R

2 term.
We consider the original Higgs inflation, Starobinsky inflation, and two di↵erent versions of
a scenario where the inflaton is a scalar field other than the Higgs, and discuss if they can
be distinguished from each other by measuring the tensor-to-scalar ratio and runnings of the
spectral index of primordial curvature perturbations, on top of the amplitude and spectral
index of the perturbations. We consider both metric and Palatini theories of gravity, showing
how detailed studies of non-minimally coupled models can help to identify the inflaton field
and how they may provide for a way to also distinguish between di↵erent theories of gravity
in the present context.
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Higgs inflation – mechanism and predictions Predictions: CMB parameters and Higgs boson mass

CMB parameters are predicted
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spectral index n ≃ 1− 8(4N+9)
(4N+3)2 ≃ 0.97

tensor/scalar ratio r ≃ 192
(4N+3)2 ≃ 0.0033

δT/T ∼ 10−5 =⇒ ξ√
λ
≃ 47000

62/Q`X"2x`mFQp!HKmX/2 Higgs inflation – consistency and possibilities 10 / 22

(Higgs inflation, Bezrukov, Shaposhnikov (2008))

Best model?

çè Starobinsky model (R^2 inflation)



Inflaton with a spectator field
- extention to multi-field case -

JCAP11(2015)008

Figure 1. Predictions of a few inflationary models (Large Field Inflation V ∝ φp with p = 2, 4
and 6, Higgs Inflation V ∝ [1 − exp(−

√

2/3φ/MPl)]2 - the Starobinsky model -, Natural Inflation
V ∝ 1 + cos(φ/f) with f = 3MPl and Power Law Inflation V ∝ exp(−αφ/MPl) with α = 0.02), when
a massive field σ is added, and when the reheating scenario is of the 7th (left panel, corresponding to
the standard “curvaton scenario”) and 9th (right panel, corresponding to a typical situation where the
added massive field drives a secondary phase of inflation) type. In the left panel, the color encodes
the relative contribution from σ to the total curvature power spectrum. In the right panel, the
color encodes the number of e-folds realized during the second phase of inflation, taking place during
reheating. The black lines are the one and two sigma Planck 2015 contours [14], and the black squares
stand for the predictions of the single-field versions of the models.

• In the 9th type (right panel of figure 1), σ drives a secondary phase of inflation. For
small-field models, the main effect is that Nend −N∗, the number of e-folds elapsed between
the Hubble exit time of the pivot scale and the end of the first phase of inflation, decreases.
(In particular, one can check that Power Law Inflation, which has an inflaton shift symmetry,
has its predictions essentially unchanged). As a consequence, predictions are computed closer
to the ending point of the first inflationary phase, where the potential V (φ) is less flat. This
is why r typically increases and nS is shifted away from scale invariance. The situation is
therefore opposite to the 7th kind displayed in the left panel: models predicting too red
values of nS provide even worse fit to the data once σ is included, models predicting the
right value of nS are also made worse, while models yielding too blue values of nS (but still
red) can provide a better fit for some parameters. For large-field models, this effect almost
compensates with the reduction in r arising from the increase in the contribution from σ to
the total perturbations, so that r does not change much. In particular, r does not decrease
sufficiently so that, even if one starts from a large single-field model with a too blue value of
nS, a good fit to the data can never be obtained.

In order to further investigate how the observational status of a given single-field model
of inflation changes when a massive scalar field is added, one needs to incorporate non-
Gaussianities to the discussion. This is done in detail in the rest of the paper. The aim of
the above discussion is only to provide the reader with a taste of the physical effects we will
encounter later. Finally, let us note that in some reheating scenarios and for some potentials,
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“Encyclopædia curvatonis”
Vennin, Koyama, Wands (2015)

JCAP09(2014)015

Figure 3. The accessible region of the quadratic curvaton models in the �
p chaotic inflation. The

pairs of circles represent the prediction of the original chaotic models for N = 50 (left) N = 60
(right). The curvaton with appropriate R > 0 and |⌘�| < 0.1 can produce {ns, r} in the region
below the dashed lines. Since the dotted lines denote the case of ⌘� = 0, only the curvaton with a
negative mass squared generates the region to the left of the dotted lines. Blue and red shaded regions
represent BICEP2 and Planck constraints, respectively [4]. For example, the point of the red star,
{ns, r} = {0.945, 0.15}, cannot be realized by the p = 2 chaotic + curvaton model, but the p = 4
model with a negative mass square curvaton and the p = 6, 8 model with a positive mass curvaton
can reproduce it. One can see that in the observationally favored region, the models are heavily
degenerated.

Combining the above expression for nT with eq. (2.8), we obtain so-called “the consistency
relation” of single slow-roll inflation models as [34]

r
(�) = �8nT . (3.2)

On the other hand, once the additional contribution to the curvature perturbations exists,
the tensor-to-scalar ratio is modified as shown in the previous section and hence the above
consistency relation would be violated as4

r =
r
(�)

1 +R
=

�8nT

1 +R
. (3.3)

In other words, through the above expression, R can be observationally determined by the
combination of the tilt of the tensor spectrum nT and the tensor-to-scalar ratio r as

R = �1� 8
nT

r
. (3.4)

4In ref. [35], the violation of the consistency relation in the case of double inflation have been studied.
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Fujita, Kawasaki, SY (2014)

so on. In general, fluctuations from the inflaton can also contribute to the primordial fluctu-
ations, and therefore the power spectrum can be given by the sum of those contribution4:

Ps(k) = P(φ)
s (k) + P(χ)

s (k), (A.9)

where P(φ)
s (k) and P(χ)

s (k) are the primordial power spectra generated by the inflaton φ and
another spectator field χ. Due to the fact that the energy density of χ is subdominant during

inflation, the spectral index and its runnings for P(χ)
s are different from those for P(φ)

s which

are given in Eqs. (A.10)–(A.8). To write down the spectral index and its runnings for P(χ)
s ,

we also need to define the slow-roll parameters for χ:

ηχ ≡ U ′′

3H2
∗
, ξ(2)χ ≡ U ′U ′′′

(3H2
∗ )

2
, σ(3)

χ ≡ (U ′)2U (4)

(3H2
∗ )

3
,

τ (4)χ ≡ (U ′)3U (5)

(3H2
∗ )

4
, ζ(5)χ ≡ (U ′)4U (6)

(3H2
∗ )

5
,

where U is a potential for χ field and a prime indicates the derivative with respect to the
χ field. A superscript (i) denotes the i-th derivative. H∗ is the Hubble parameter at the
horizon exit during inflation. By using these slow-roll parameters along with those defined
for φ provided in Eqs. (A.3), the spectral index and its runnings for χ are given as

n(χ)
s − 1 = −2ϵ+ 2ηχ, (A.10)

α(χ)
s = −8ϵ2 + 4ϵη + 4ϵηχ − 2ξ(2)χ , (A.11)

β(χ)
s = −64ϵ3 + 56ϵ2η + 24ϵ2ηχ − 8ϵη2 − 8ϵηηχ − 4ϵξ(2) − 12ϵξ(2)χ + 2ηχξ

(2)
χ + 2σ(3)

χ ,

(A.12)

γ(χ)s = −768ϵ4 + 944ϵ3η + 240ϵ3ηχ − 288ϵ2η2 − 160ϵ2ηηχ − 88ϵ2ξ(2) − 120ϵ2ξ(2)χ

+16ϵη3 + 16ϵη2ηχ + 28ϵηξ(2) + 8ϵηχξ
(2) + 32ϵηξ(2)χ + 24ϵηχξ

(2)
χ + 4ϵσ(3)

+24ϵσ(3)
χ − 2η2χξ

(2)
χ − 6ηχσ

(3)
χ − 2(ξ(2)χ )2 − 2τ (4)χ , (A.13)

δ(χ)s = −12288ϵ5 + 19360ϵ4η + 3360ϵ4ηχ − 9120ϵ3η2 − 3360ϵ3ηηχ − 2000ϵ3ξ(2) − 1680ϵ3ξ(2)χ

+1312ϵ2η3 + 800ϵ2η2ηχ + 1296ϵ2ηξ(2) + 240ϵ2ηχξ
(2) + 960ϵ2ηξ(2)χ + 360ϵ2ηχξ

(2)
χ

+128ϵ2σ(3) + 360ϵ2σ(3)
χ − 32ϵη4 − 32ϵη3ηχ − 132ϵη2ξ(2) − 56ϵηηχξ

(2) − 28ϵ(ξ(2))2

−80ϵη2ξ(2)χ − 80ϵηηχξ
(2)
χ − 40ϵη2χξ

(2)
χ − 40ϵξ(2)ξ(2)χ − 40ϵ(ξ(2)χ )2 − 44ϵησ(3) − 8ϵηχσ

(3)

−80ϵησ(3)
χ − 120ϵηχσ

(3)
χ − 4ϵτ (4) − 40ϵτ (4)χ + 2η3χξ

(2)
χ + 14η2χσ

(3)
χ + 8ηχ(ξ

(2)
χ )2

+12ηχτ
(4)
χ + 10ξ(2)χ σ(3)

χ + 2ζ(5)χ . (A.14)

Since P(φ)
s and P(χ)

s have different scale dependences, they should be treated separately.
However, we can define the effective spectral index and its runnings by using the total power
spectrum as

n(eff)
s − 1 =

d ln(P(φ)
s (k) + P(χ)

s (k))

d ln k
, (A.15)

with which we can describe the power spectrum as if there is only one power spectrum.

4 This kind of model is called mixed inflaton and spectator field models, which has been studied in the
context of the curvaton and modulated rehearing models [39–48, 50].
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Not only tensor-to-scalar ratio, but also spectral index should change
è degenerate ?

inflaton spectator



R^2 inflation and …

R  - inflation
2

quartic - spectator

Figure 8. The predictions for r, ns and αs for the R2-inflation (red circles) and the quartic-spectator
case (blue circles). The left panel shows the predictions in the r-ns plane, and the right one shows
those in the αs-ns plane.

plane, and the right one shows those in αs − ns plane. Here, we choose Qχ so that r
in the quartic-spectator case can be consistent with that in the R2-inflation for N0 =
50 − 60. Comparing this figure and Fig. 6 , it is quite difficult to distinguish the
quartic-spectator case from R2-inflation by using the constraint on αs obtained from
the minihalo observations.

• natural-spectator case

In a similar fashion, let us consider the multi-field case where the inflaton’s potential
is given by the so-called “natural” inflation potential,

V (φ) = Λ4

[
1− cos

φ

f

]
, (0 ≤ φ ≤ πf), (4.14)

where Λ denotes the energy scale of inflation and f determines the curvature of the
potential. Based on the slow-roll approximation, the e-folding number for this case is
expressed as

N0 =
f2

M2
pl

ln

∣∣∣∣
cos2(φe/2f)

cos2(φ0/2f)

∣∣∣∣, (4.15)

where φe denotes the field value at the end of inflation. The slow-roll parameters are
respectively given by

ϵ =
M2

pl

2f2

cos2(φ0/2f)

sin2(φ0/2f)
, η =

M2
pl

f2

1− 2 sin2(φ0/2f)

2 sin2(φ0/2f)
, ξ(2) = −

M4
pl

f4

cos2(φ0/2f)

sin2(φ0/2f)
.(4.16)

The end of inflation is defined by ϵe = 1, and it gives

cos2
φe

2f
=

2f2/M2
pl

1 + 2f2/M2
pl

. (4.17)

In Fig. 9, we plot the predictions for r, ns and αs for the R2-inflation (red circles)
and natural-spectator case (purple circles). The left panel shows the predictions in the
r-ns plane, and the right one shows those in the αs-ns plane. Here, we take Qχ to

– 16 –

Nariai and Tomita (1971), Starobinsky (1980), …

R^2 inflation (N = 50 - 60)

Sekiguchi, Takahashi, Tashiro, SY in preparation

phi^4-inflation with a massless spectator
(N = 50 – 60) To explicitly express the effective spectral index and its runnings with the slow-roll

parameters, we also need to define the fraction of the contribution to the (total) power
spectrum from φ and χ fields as

Qφ ≡ P(φ)
s (k0)

P(φ)
s (k0) + P(χ)

s (k0)
, Qχ ≡ P(χ)

s (k0)

P(φ)
s (k0) + P(χ)

s (k0)
, (A.16)

where these quantities are to be evaluated at the pivot scale. With these variables, the
spectral index and its runnings are given by

n(eff)
s − 1 = Qφ(n

(φ)
s − 1) +Qχ(n

(χ)
s − 1), (A.17)

α(eff)
s = Qφα

(φ)
s +Qχα

(χ)
s +QφQχ(∆ns)

2, (A.18)

β(eff)
s = Qφβ

(φ)
s +Qχβ

(χ)
s + 3QφQχ∆ns∆αs −QφQχ(Qφ −Qχ)(∆ns)

3, (A.19)

γ(eff)s = Qφγ
(φ)
s +Qχγ

(χ)
s +QφQχ(4∆ns∆βs + 3(∆αs)

2)

−6QφQχ(Qφ −Qχ)(∆ns)
2∆αs + {QφQχ(Qφ −Qχ)

2 − 2Q2
φQ

2
χ}(∆ns)

4,

(A.20)

δ(eff)s = Qφδ
(φ)
s +Qχδ

(χ)
s +QφQχ(10∆αs∆βs + 5∆ns∆γs)

−QφQχ(Qφ −Qχ){10(∆ns)
2∆βs + 15∆ns(∆αs)

2}
+{10QφQχ(Qχ −Qφ)

2 − 20Q2
φQ

2
χ}(∆ns)

3∆αs

−{QφQχ(Qχ −Qφ)
3 − 8Q2

φQ
2
χ(Qχ −Qφ)}(∆ns)

5, (A.21)

where

∆ns = n(φ)
s −n(χ)

s , ∆αs = α(φ)
s −α(χ)

s , ∆βs = β(φ)
s −β(χ)

s , ∆γs = γ(φ)s −γ(χ)s , ∆δs = δ(φ)s −δ(χ)s .
(A.22)

In the limits where Qφ → 0 and Qχ → 0, the expressions become the same as the pure
spectator and inflaton cases, respectively.

B Constraints on higher order runnings

In the main text, we have truncated the expansion at the quadratic order running βs. How-
ever, minihalos can probe small scale fluctuations at 20 Mpc−1 < k < 500 Mpc−1. Therefore,
we can also probe the higher order runnings such as the cubic and quartic runnings γs and
δs. In Fig. 10, the expected constraints on ns and the runnings for the case with zmin = 6
are given and their 1σ sensitivities are summarized in Table 5. Also, as discussed in the text,
the constraints depend on the minimum redshift. In Figs. 11 and 12, the constraints from
Planck+SKA and COrE+FFTT are shown respectively, for several cases of zmin. In Table 6,
1σ sensitivities are also summarized.
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where Λ denotes the energy scale of the model and f determines the curvature of the
potential. Based on the slow-roll approximation, the e-folding number for this case is
expressed as

N0 =
f2

M2
pl

ln

∣∣∣∣
cos2(φe/2f)

cos2(φ0/2f)

∣∣∣∣ , (4.15)

where φe denotes the field value at the end of inflation. The slow-roll parameters are
respectively given by
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The end of inflation is defined by ϵ = 1, and it gives

cos2
φe

2f
=

2f2/M2
pl

1 + 2f2/M2
pl

. (4.17)

In Fig. 7, we plot the predictions for r, ns and αs for the R2-inflation (red circles)
and natural-spectator case (purple circles). The left panel shows the predictions in
the r-ns plane, and the right one shows those in the αs-ns plane. Here, we take Qχ

to be 0.5 and 0.6, and the range of f and N0 as 3.3 < f < 3.75 and 50 < N0 < 60,
respectively. As one can see, for these parameter values, the natural-spectator model
and the R2-inflation partially degenerate in the r-ns plane. However, when we compare
the prediction of these models in the ns–αs plane, it would be easy to distinguish these
two models using the expected constraint on the ns–αs plane shown in Fig. 8.

R  - inflation
2

natural - spectator

Figure 7. The predictions for r, ns and αs for the R2-inflation (red circles) and the natural-spectator
model (purple circles). The left panel shows the predictions in the r-ns plane, and the right one shows
those in the αs-ns plane.
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natural inflation with a massless spectator
(N = 50 – 60,                              ,

From the above expressions, the spectral index and its running of the total primordial
power spectrum are respectively given by

n(eff)
s − 1 = (1−Qχ)

(
n(φ)
s − 1

)
+Qχ

(
n(χ)
s − 1

)
= − 1

2N0
(p+ 2− 2Qχ) ,

α(eff)
s = (1−Qχ)α

(φ)
s +Qχα

(χ)
s + (1−Qχ)Qχ(∆ns)

2 = − 1

2N2
0

(
p+ 2− 4Qχ + 2Q2

χ

)
,

(4.12)

where ∆ns := n(φ)
s −n(χ)

s and Qχ represents the fraction of the contribution from χ-field
to the total power spectrum (see Appendix A). Qχ can be related to the tensor-to-scalar
ratio as

r = (1−Qχ)16ϵ = (1−Qχ)
4p

N0
. (4.13)

Hence, once we fix the e-folding number, N0, fixing r corresponds to fixing Qχ.

R  - inflation
2

quartic - spectator

Figure 6. The predictions for r, ns and αs for the R2-inflation (red circles) and the quartic-spectator
case (blue circles). The left panel shows the predictions in the r-ns plane, and the right one shows
those in the αs-ns plane.

In Fig. 6, we plot the predictions for r, ns and αs for R2-inflation (red circles) and
quartic-spectator case (blue circles). The left panel shows the predictions in the r−ns

plane, and the right one shows those in the αs − ns plane. Here, we choose Qχ so
that r in the quartic-spectator case can be consistent with that in the R2-inflation for
N0 = 50− 60. Comparing this figure and Fig. 8 , it is quite difficult to distinguish the
quartic-spectator case from R2-inflation by using the constraint on αs obtained from
the minihalo observations. In fact, we have also checked that even if we use a higher
order running βs, it is still difficult to differentiate these models even with the future
precision of βs obtained by observations of 21cm fluctuations from minihalo.

• Natural-spectator case

In a similar fashion, let us consider the multi-field case where the inflaton models is
given by the so-called “natural” inflation with the potential:

V (φ) = Λ4

[
1− cos

φ

f

]
(0 ≤ φ ≤ πf), (4.14)
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quartic-spectator case from R2-inflation by using the constraint on αs obtained from
the minihalo observations. In fact, we have also checked that even if we use a higher
order running βs, it is still difficult to differentiate these models even with the future
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How to discriminate?

• Higher order ?



Local type non-Gaussianity in 
multi-scalar inflation

è through the non-linear interaction 
è non-zero higher order perturbations
è non-Gaussianity!!
è observed by higher order correlation functions!

Linear perturbation (free propagation) ßà Gaussian

Standard single slow-roll case;

slow-roll suppressed!!

Spectator case;

transfer from spectator to curvature perturbations



Distinguishing models by Local type NG

• Single inflation  vs  spectator (curvaton, …)

Critical value; 

Spectator (curvaton) scenario è

Single scalar inflation è

slow-roll suppression

due to the transfer from spectator to adiabatic curvature pert. 



How to discriminate?

• Higher order ?

• Smaller scales?



Primordial fluctuations from inflation
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Super-horizon 

Sub-horizon 

Quantum fluctuations 
(causal) are stretched by 
inflationary expansion 
è
“classical” super-horizon
(acausal) fluctuations
(basically determined at 
the horizon exit)
è
primordial fluctuations 
with different scales 
(wavenumber) would 
bring us the information 
of different stages of 
inflation !! 

generation
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Runnings of spectral index as a 
perturbative approach

4.1 Runnings of the spectral index

Conventionally the scale-dependence of the primordial power spectrum is given by the power
law form with the spectral index ns, which is often assumed to be constant in scale (wavenum-
ber). However, the spectral index can generally depend on the scale and such scale-dependence
could give us detailed information on the primordial power spectrum Ps(k) := k3Pζ(k)/2π2,
where Pζ(k) is defined as

⟨ζ(k)ζ(k′)⟩ = (2π)3δ(3)(k + k′)Pζ(k), (4.1)

with ζ being primordial curvature perturbations. Here, δ(3)(k+k′) is a 3-dimensional Dirac’s
delta function and Pζ(k) determines the initial condition of the linear matter power spectrum
denoted by P (k) through the Poisson equation. By taking into account the scale-dependence
of the spectral index, we can perturbatively write Ps as

Ps(k) = As

(
k

k0

)ns−1+ 1
2αs ln(k/k0)+

1
3!βs ln2(k/k0)

, (4.2)

where As, k0 and ns are respectively the amplitude, the pivot scale and the leading-order
spectral index, and we have expanded Ps in terms of ln k up to the 2nd order. The expansion
coefficients in the 1st and 2nd orders are denoted as αs(≡ dns/d ln k) and βs(≡ d2ns/d ln

2 k),
which we call the running and the quadratic running of ns, respectively. In the framework
of the slow-roll inflation, the runnings such as αs and βs can be explicitly written down by
using the so-called slow-roll parameters. We provide those expressions in Appendix A. In
principle, we can expand Ps up to arbitrarily higher orders and hence we also, in Appendix
A, give expressions for higher order runnings in terms of the slow-roll parameters not only
for the single-field case but also for the multi-field case.

4.2 Forecasts based on the Fisher analysis

Let us investigate the expected constraints on primordial power spectrum in future 21cm
line observations, especially focusing on the parameters ns, αs and βs. The determination
of these parameters requires precise measurements of cosmological perturbations over a wide
range of scales, which can be achieved by combining observations of the CMB and 21 cm line
fluctuations. As 21 cm line observations, we in this paper adopt the specifications of SKA [23]
and FFTT [24]. In addition to 21 cm line fluctuations from minihalos, we also combine CMB
observations with the expected sensitivities of Planck [34] and COrE [35]#1. The survey
parameters we adopt are summarized in Tables 1 and 2. In our analysis, we assume a flat
ΛCDM model and the pivot scale k0 is fixed to 0.05 Mpc−1 as in the Planck analysis. In
addition to ns,αs and βs, we also include the following parameters in the Fisher matrix:
the reduced Hubble parameter h, baryon and CDM densities ωb and ωc, the reionization
optical depth τreion, and the amplitude of the primordial power spectrum As. As the fiducial
parameters, we assume the same as ones used in Fig. 2.

Fig. 3 shows derivatives of C(21cm)
l with respect to parameters ns (red), αs (green), βs

(blue), which captures the dependence of C(21cm)
l (z, z′) on these parameters. When C(21cm)

l

is highly dependent on a parameter, the derivative of C(21cm)
l becomes large in the figure.

Here, fixing the central redshift (z + z′)/2 = 5, we take z − z′ =0 (top-left), 0.2 (top-right),
#1 While the survey parameters we adopt here are somewhat different from those in the most recent proposal

of the COrE mission, our results do not differ significantly.

– 8 –

Spectral index

Taylor series of scale dependence of spectral index

For the slow-roll inflation, these parameters can be expressed w.r.t. slow-roll parameters as 

Below we give explicit expressions for these runnings using the slow-roll parameters for the
single-field and multi-field models.

A.1 Single-field case

Assuming a slow-roll single-field inflation model with a canonical kinetic term, ns and the
running parameters can be explicitly written down with the slow-roll parameters, which are
defined using the inflaton potential V (φ) as

ϵ ≡ 1

2
M2

pl

(
V ′

V

)2

, η ≡ M2
pl

V ′′

V
, ξ(2) ≡ M4

pl

V ′V ′′′

V 2
,

σ(3) ≡ M6
pl

(V ′)2V (4)

V 3
, τ (4) ≡ M8

pl

(V ′)3V (5)

V 4
, ζ(5) ≡ M10

pl

(V ′)4V (6)

V 5
.

(A.3)

Using these slow-roll parameters, the spectral index and the runnings are given by:

ns − 1 = −6ϵ+ 2η, (A.4)

αs = −24ϵ2 + 16ϵη − 2ξ(2), (A.5)

βs = −192ϵ3 + 192ϵ2η − 32ϵη2 − 24ϵξ(2) + 2ηξ(2) + 2σ(3), (A.6)

γs = −2304ϵ4 + 3072ϵ3η − 1024ϵ2η2 − 384ϵ2ξ(2) + 64ϵη3 + 148ϵηξ(2) + 36ϵσ(3)

−6ησ(3) − 2η2ξ(2) − 2(ξ(2))2 − 2τ (4), (A.7)

δs = −36864ϵ5 + 61440ϵ4η − 30720ϵ3η2 − 7680ϵ3ξ(2) + 4736ϵ2η3 + 5448ϵ2ηξ(2)

+744ϵ2σ(3) − 128ϵη4 − 652ϵη2ξ(2) − 164ϵ(ξ(2))2 − 340ϵησ(3) − 52ϵτ (4)

+2η3ξ(2) + 14η2σ(3) + 8η(ξ(2))2 + 12ητ (4) + 10ξ(2)σ(3) + 2ζ(5). (A.8)

A.2 Multi-field case

When a light scalar field χ other than the inflaton φ existed during the inflationary epoch#3,
such a scalar field can also acquire primordial fluctuations and affect the present day density
fluctuations as in the curvaton model [39–41], the modulated reheating model [42, 43] and
so on. In general, fluctuations from the inflaton can also contribute to the primordial fluctu-
ations, and therefore the power spectrum can be given by the sum of those contribution#4:

Ps(k) = P(φ)
s (k) + P(χ)

s (k), (A.9)

where P(φ)
s (k) and P(χ)

s (k) are the primordial power spectra generated by the inflaton φ and
another spectator field χ. Due to the fact that the energy density of χ is subdominant during

inflation, the spectral index and its runnings for P(χ)
s are different from those for P(φ)

s which

are given in Eqs. (A.10)–(A.8). To write down the spectral index and its runnings for P(χ)
s ,

we also need to define the slow-roll parameters for χ:

ηχ ≡ U ′′

3H2
∗
, ξ(2)χ ≡ U ′U ′′′

(3H2
∗ )

2
, σ(3)

χ ≡ (U ′)2U (4)

(3H2
∗ )

3
,

τ (4)χ ≡ (U ′)3U (5)

(3H2
∗ )

4
, ζ(5)χ ≡ (U ′)4U (6)

(3H2
∗ )

5
,

#3 Such another (light) scalar field is sometimes called a spectator field since it does not affect the inflationary
dynamics.

#4 This kind of model is called mixed inflaton and spectator field models, which has been studied in the
context of the curvaton and modulated rehearing models [44–53, 55].
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V; inflaton’s potential

depend on higher order slow-roll parameters which do not appear in “r” and “n_s”



As examples

R  - inflation
2

quartic - spectator

Figure 8. The predictions for r, ns and αs for the R2-inflation (red circles) and the quartic-spectator
case (blue circles). The left panel shows the predictions in the r-ns plane, and the right one shows
those in the αs-ns plane.

plane, and the right one shows those in αs − ns plane. Here, we choose Qχ so that r
in the quartic-spectator case can be consistent with that in the R2-inflation for N0 =
50 − 60. Comparing this figure and Fig. 6 , it is quite difficult to distinguish the
quartic-spectator case from R2-inflation by using the constraint on αs obtained from
the minihalo observations.

• natural-spectator case

In a similar fashion, let us consider the multi-field case where the inflaton’s potential
is given by the so-called “natural” inflation potential,

V (φ) = Λ4

[
1− cos

φ

f

]
, (0 ≤ φ ≤ πf), (4.14)

where Λ denotes the energy scale of inflation and f determines the curvature of the
potential. Based on the slow-roll approximation, the e-folding number for this case is
expressed as

N0 =
f2

M2
pl

ln

∣∣∣∣
cos2(φe/2f)

cos2(φ0/2f)

∣∣∣∣, (4.15)

where φe denotes the field value at the end of inflation. The slow-roll parameters are
respectively given by

ϵ =
M2

pl

2f2

cos2(φ0/2f)

sin2(φ0/2f)
, η =

M2
pl

f2

1− 2 sin2(φ0/2f)

2 sin2(φ0/2f)
, ξ(2) = −

M4
pl

f4

cos2(φ0/2f)

sin2(φ0/2f)
.(4.16)

The end of inflation is defined by ϵe = 1, and it gives

cos2
φe

2f
=

2f2/M2
pl

1 + 2f2/M2
pl

. (4.17)

In Fig. 9, we plot the predictions for r, ns and αs for the R2-inflation (red circles)
and natural-spectator case (purple circles). The left panel shows the predictions in the
r-ns plane, and the right one shows those in the αs-ns plane. Here, we take Qχ to
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R^2 inflation (N = 50 - 60)

Sekiguchi, Takahashi, Tashiro, SY (2018)

phi^4-inflation with a massless spectator

(N = 50 – 60) To explicitly express the effective spectral index and its runnings with the slow-roll
parameters, we also need to define the fraction of the contribution to the (total) power
spectrum from φ and χ fields as

Qφ ≡ P(φ)
s (k0)

P(φ)
s (k0) + P(χ)

s (k0)
, Qχ ≡ P(χ)

s (k0)

P(φ)
s (k0) + P(χ)

s (k0)
, (A.16)

where these quantities are to be evaluated at the pivot scale. With these variables, the
spectral index and its runnings are given by

n(eff)
s − 1 = Qφ(n

(φ)
s − 1) +Qχ(n

(χ)
s − 1), (A.17)

α(eff)
s = Qφα

(φ)
s +Qχα

(χ)
s +QφQχ(∆ns)

2, (A.18)

β(eff)
s = Qφβ

(φ)
s +Qχβ

(χ)
s + 3QφQχ∆ns∆αs −QφQχ(Qφ −Qχ)(∆ns)
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where

∆ns = n(φ)
s −n(χ)

s , ∆αs = α(φ)
s −α(χ)

s , ∆βs = β(φ)
s −β(χ)

s , ∆γs = γ(φ)s −γ(χ)s , ∆δs = δ(φ)s −δ(χ)s .
(A.22)

In the limits where Qφ → 0 and Qχ → 0, the expressions become the same as the pure
spectator and inflaton cases, respectively.

B Constraints on higher order runnings

In the main text, we have truncated the expansion at the quadratic order running βs. How-
ever, minihalos can probe small scale fluctuations at 20 Mpc−1 < k < 500 Mpc−1. Therefore,
we can also probe the higher order runnings such as the cubic and quartic runnings γs and
δs. In Fig. 10, the expected constraints on ns and the runnings for the case with zmin = 6
are given and their 1σ sensitivities are summarized in Table 5. Also, as discussed in the text,
the constraints depend on the minimum redshift. In Figs. 11 and 12, the constraints from
Planck+SKA and COrE+FFTT are shown respectively, for several cases of zmin. In Table 6,
1σ sensitivities are also summarized.
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where Λ denotes the energy scale of the model and f determines the curvature of the
potential. Based on the slow-roll approximation, the e-folding number for this case is
expressed as
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where φe denotes the field value at the end of inflation. The slow-roll parameters are
respectively given by
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The end of inflation is defined by ϵ = 1, and it gives

cos2
φe

2f
=

2f2/M2
pl

1 + 2f2/M2
pl

. (4.17)

In Fig. 7, we plot the predictions for r, ns and αs for the R2-inflation (red circles)
and natural-spectator case (purple circles). The left panel shows the predictions in
the r-ns plane, and the right one shows those in the αs-ns plane. Here, we take Qχ

to be 0.5 and 0.6, and the range of f and N0 as 3.3 < f < 3.75 and 50 < N0 < 60,
respectively. As one can see, for these parameter values, the natural-spectator model
and the R2-inflation partially degenerate in the r-ns plane. However, when we compare
the prediction of these models in the ns–αs plane, it would be easy to distinguish these
two models using the expected constraint on the ns–αs plane shown in Fig. 8.
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Figure 7. The predictions for r, ns and αs for the R2-inflation (red circles) and the natural-spectator
model (purple circles). The left panel shows the predictions in the r-ns plane, and the right one shows
those in the αs-ns plane.
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From the above expressions, the spectral index and its running of the total primordial
power spectrum are respectively given by
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where ∆ns := n(φ)
s −n(χ)

s and Qχ represents the fraction of the contribution from χ-field
to the total power spectrum (see Appendix A). Qχ can be related to the tensor-to-scalar
ratio as

r = (1−Qχ)16ϵ = (1−Qχ)
4p

N0
. (4.13)

Hence, once we fix the e-folding number, N0, fixing r corresponds to fixing Qχ.
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Figure 6. The predictions for r, ns and αs for the R2-inflation (red circles) and the quartic-spectator
case (blue circles). The left panel shows the predictions in the r-ns plane, and the right one shows
those in the αs-ns plane.

In Fig. 6, we plot the predictions for r, ns and αs for R2-inflation (red circles) and
quartic-spectator case (blue circles). The left panel shows the predictions in the r−ns

plane, and the right one shows those in the αs − ns plane. Here, we choose Qχ so
that r in the quartic-spectator case can be consistent with that in the R2-inflation for
N0 = 50− 60. Comparing this figure and Fig. 8 , it is quite difficult to distinguish the
quartic-spectator case from R2-inflation by using the constraint on αs obtained from
the minihalo observations. In fact, we have also checked that even if we use a higher
order running βs, it is still difficult to differentiate these models even with the future
precision of βs obtained by observations of 21cm fluctuations from minihalo.

• Natural-spectator case

In a similar fashion, let us consider the multi-field case where the inflaton models is
given by the so-called “natural” inflation with the potential:

V (φ) = Λ4

[
1− cos

φ

f

]
(0 ≤ φ ≤ πf), (4.14)
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that r in the quartic-spectator case can be consistent with that in the R2-inflation for
N0 = 50− 60. Comparing this figure and Fig. 8 , it is quite difficult to distinguish the
quartic-spectator case from R2-inflation by using the constraint on αs obtained from
the minihalo observations. In fact, we have also checked that even if we use a higher
order running βs, it is still difficult to differentiate these models even with the future
precision of βs obtained by observations of 21cm fluctuations from minihalo.
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As examples

R^2 inflation (N = 50 - 60)

Sekiguchi, Takahashi, Tashiro, SY (2018)

phi^4-inflation with a massless spectator

(N = 50 – 60) To explicitly express the effective spectral index and its runnings with the slow-roll
parameters, we also need to define the fraction of the contribution to the (total) power
spectrum from φ and χ fields as
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where these quantities are to be evaluated at the pivot scale. With these variables, the
spectral index and its runnings are given by
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where

∆ns = n(φ)
s −n(χ)

s , ∆αs = α(φ)
s −α(χ)

s , ∆βs = β(φ)
s −β(χ)

s , ∆γs = γ(φ)s −γ(χ)s , ∆δs = δ(φ)s −δ(χ)s .
(A.22)

In the limits where Qφ → 0 and Qχ → 0, the expressions become the same as the pure
spectator and inflaton cases, respectively.

B Constraints on higher order runnings

In the main text, we have truncated the expansion at the quadratic order running βs. How-
ever, minihalos can probe small scale fluctuations at 20 Mpc−1 < k < 500 Mpc−1. Therefore,
we can also probe the higher order runnings such as the cubic and quartic runnings γs and
δs. In Fig. 10, the expected constraints on ns and the runnings for the case with zmin = 6
are given and their 1σ sensitivities are summarized in Table 5. Also, as discussed in the text,
the constraints depend on the minimum redshift. In Figs. 11 and 12, the constraints from
Planck+SKA and COrE+FFTT are shown respectively, for several cases of zmin. In Table 6,
1σ sensitivities are also summarized.
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In Fig. 6, we plot the predictions for r, ns and αs for R2-inflation (red circles) and
quartic-spectator case (blue circles). The left panel shows the predictions in the r−ns

plane, and the right one shows those in the αs − ns plane. Here, we choose Qχ so
that r in the quartic-spectator case can be consistent with that in the R2-inflation for
N0 = 50− 60. Comparing this figure and Fig. 8 , it is quite difficult to distinguish the
quartic-spectator case from R2-inflation by using the constraint on αs obtained from
the minihalo observations. In fact, we have also checked that even if we use a higher
order running βs, it is still difficult to differentiate these models even with the future
precision of βs obtained by observations of 21cm fluctuations from minihalo.
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where Λ denotes the energy scale of the model and f determines the curvature of the
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In Fig. 7, we plot the predictions for r, ns and αs for the R2-inflation (red circles)
and natural-spectator case (purple circles). The left panel shows the predictions in
the r-ns plane, and the right one shows those in the αs-ns plane. Here, we take Qχ

to be 0.5 and 0.6, and the range of f and N0 as 3.3 < f < 3.75 and 50 < N0 < 60,
respectively. As one can see, for these parameter values, the natural-spectator model
and the R2-inflation partially degenerate in the r-ns plane. However, when we compare
the prediction of these models in the ns–αs plane, it would be easy to distinguish these
two models using the expected constraint on the ns–αs plane shown in Fig. 8.
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model (purple circles). The left panel shows the predictions in the r-ns plane, and the right one shows
those in the αs-ns plane.
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Primordial NG in LSS

Ø higher order correlation functions (bispectrum, …)

Ø Scale-dependent bias

3

Btris =
1

2
Γ(1)
X (k1)Γ

(1)
X (k2)

∫

d3p

(2π)3
Γ(2)
X (p,k3 − p)TL(k1,k2,p,k3 − p) + 2 perms.,

Bloop,1
grav =

∫

d3p

(2π)3
Γ(2)
X (p,k1 − p)Γ(2)

X (−p,k2 + p)Γ(2)
X (−k1 + p,−k2 − p)PL(p)PL(|k1 − p|)PL(|k2 + p|),

Bloop,2
grav =

1

2
Γ(1)
X (k1)PL(k1)

∫

d3p

(2π)3
Γ(2)
X (p,k2 − p)Γ(3)

X (−k1,−p,−k2 + p)PL(p)PL(|k2 − p|) + 5 perms.,

Bloop,1
bis =

1

2
Γ(1)
X (k1)Γ

(1)
X (k2)

∫

d3p

(2π)3
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Bloop,2
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The functions PL, BL and TL respectively denote the power-, bi- and tri-spectra of the linear density field, which are
defined through

⟨δL(k1)δL(k2)⟩ = (2π)3δ(k1 + k2)PL(k1),

⟨δL(k1)δL(k2)δL(k3)⟩ = (2π)3δ(k1 + k2 + k3)BL(k1, k2, k3),

⟨δL(k1)δL(k2)δL(k3)δL(k4)⟩ = (2π)3δ(k1 + k2 + k3 + k4)TL(k1, k2, k3, k4). (4)

Note that the linear density field is related to the primordial curvature perturbations Φ through the function M(k):

δL(k) = M(k)Φ(k); M(k) =
2

3

D(z)

D(z∗)(1 + z∗)

k2T (k)

H2
0Ωm0

, (5)

where T (k), D(z), H0 and Ωm0 are the transfer function, the linear growth factor, the Hubble parameter at present
epoch, and the matter density parameter, respectively. Here z∗ denotes an arbitrary redshift at the matter-dominated
era. With the relation (5), the linear power spectrum is given by

PL(k) = {M(k)}2 PΦ(k), (6)

with

⟨Φ(k)Φ(k′)⟩ = (2π)3δ(k+ k′)PΦ(k). (7)

In Fig. 1, diagrammatic representation of each term in Eq. (3) is shown. A double solid line connected with a
grey circle, and a crossed circle glued to multiple single solid lines respectively indicate the multi-point propagator of

biased objects Γ(n)
X , and the correlator of the initial linear density field.

B. Multi-point propagators in the large-scale limit

The multi-point propagator Γ(n)
X is defined as a fully non-perturbative quantity that contains all the important

ingredients to describe the non-linear gravitational evolution and galaxy/halo bias properties. It is therefore difficult
to evaluate it rigorously, however, for the large scales of our interest, perturbative treatment can work well, and we
obtain the simplified expressions [16, 21]. In particular, taking the large-scale limit, we have

Γ(1)
X (k) ≈ 1 + cL1 (k),

Γ(2)
X (k1,k2) ≈ F2(k1,k2) +

(

1 +
k1 · k2

k22

)

cL1 (k1) +

(

1 +
k1 · k2

k21

)

cL1 (k2) + cL2 (k1,k2),

Γ(3)
X (−k1,−p,−k2 + p) ≈ −

k1 · k3

k21
cL2 (−p,p) + cL3 (−k1,−p,−k2 + p), (8)
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where n(z) is the redshift distribution, as shown in Fig. 2,
dA is the comoving angular diameter distance and H(z) is
the Hubble parameter at redshift z. The effective redshift of
our sample is zeff = 2.4 and is the redshift we will use in our
calculations and it is consistent with the redshift measured
in White et al. (2012), which is zeff = 2.39.

Finally in order to measure the linear bias we have to
take into consideration that the generated ΛCDM model
gives a correlation function in the real space, while the mea-
sured one is in the redshift space. Hence the relation we will
use to calculate the best-fit bias, that incorporates the anal-
ogy between the two distributions, is according to Kaiser
(1987)

ξqso(s) =

(

b2 +
2
3
bf +

f2

5

)

ξm(r) (14)

where f = Ωm(z)0.56, is the gravitational growth factor.
The model is fitted to the measured correlation function

ξqso(s) by minimizing the χ2 statistics with the full covari-
ance matrix, calculated from

χ2 =
N
∑

i,j=1

(ξi − ξmi )C−1
ij (ξj − ξmj ) (15)

where the sum is over the different bins i and j, C−1 is the
inverse of the covariance matrix defined from the jackknife
re-sampling method (see Eq. 6), ξmi and ξi is the value of the
modelled and measured correlation function respectively, at
the ith bin.

The best-fit linear bias is estimated as being the only
freeparameter of the generated model. We fit ΛCDM in
the scales 3 < s < 50 h−1Mpc, after taking into account
the Kaiser effect. The resulting linear bias is found to be
b = 3.74 ± 0.12 with χ2

red = 1.28. While after fitting the
model to the whole range of scales, 3 < s < 210 h−1Mpc, we
measure a bias parameter of b = 3.7±0.11 with χ2

red = 1.78.
The difference between the two best-fit linear biases is neg-
ligible and inside their 1σ error limits. The measured lin-
ear bias is in good agreement with b = 3.8 ± 0.3 found by
White et al. (2012), after analysing the same quasar sam-
ple, as well as the bias results from other quasar clustering
studies (Croom et al. 2005) at overlapping redshift ranges.

The observed excess in large scales clustering led to a
higher χ2

red value of the best-fit bias from the whole range
of scales. This is due to the poor fit of the model at these
separations. As a result of the statistical uncertainties of
the large scales data, the measured value does not have a
significant difference compared to the measurement coming
from the fitting on the small scales. In our calculations we
will use the one originating from the fitting of the model
till the scales of s ∼ 50 h−1Mpc, since we are interested in
measuring the Gaussian part of the bias and at this range
the ΛCDM Universe based model fits well.

The resulting ΛCDM model together with the quasar
correlation function is plotted in Fig. 5. As we can see the
model fits well to the data well up to scales of ∼ 50 h−1Mpc.
At scales larger than 100 h−1Mpc a plateau is observed that
increasingly dominates the quasar clustering. In addition a
peak can be seen at 97 h−1Mpc, rather than where it is

10 100
s (h-1Mpc)

0.001

0.010

0.100

1.000

 ξ(
s)

BOSS QSO
ΛCDM

Figure 5. The measured redshift space two-point correlation
function, ξ(s), for the BOSS quasar sample. The dotted line is
the best-fit ΛCDM model, as defined in the text below.

expected at ∼ 105 h−1Mpc. However, it is detected at just
the 1σ level.

We test the goodness-of-fit of the ΛCDM model to our
data by fitting it in the scale range of 3−120 h−1Mpc, where
we measure χ2

red = 1.77 for 18 degrees of freedom. The data
in these scales reject the standard model at 2.2σ significance
level. If we also include the large scales (i.e. 3−210 h−1Mpc)
in the fitting process the result of the goodness-of-fit will be,
χ2
red = 1.78 on 30 degrees of freedom. ΛCDM in this case is

rejected at a significance level of 2.7σ.

4 TEST FOR NON-GAUSSIANITY

The presence of primordial non-Gaussianity affects the pri-
mordial gravitational potential perturbations (Eq. 1), which
will induce non-Gaussian characteristics into the density
field through the Poisson equation. This will affect the peaks
of the initial matter density distribution, where the dark
matter halos collapse on such overdensity peaks above a
threshold δc. Non-Gaussianities affect the high mass tail
(rare events) of the halo mass function, where for a posi-
tive f local

NL more high-sigma peaks will be generated leading
to a larger number of high-mass dark matter halos. Besides
the effect of non-Gaussianity in the mass function of ha-
los, the existence of a gravitational potential bispectrum of
the local type can introduce an extra scale dependent term
in the dark matter halo bias and hence in the galaxy bias
(Dalal et al. 2008; Matarrese & Verde 2008), giving

bEeff (k, z, fNL) = bEG + 3fNL(b
E
G − 1)

H2
0Ωmδc(z)
c2T (k)k2

(16)

where bG is the linear Gaussian bias measured in
the previous section, T (k) is the transfer function and
δc(z) = δ0c (z)/D(z) ∼ 1.686/D(z) assuming an Einstein-de
Sitte cosmology, with D(z) being the linear growth fac-
tor normalized to be equal to unity at z = 0. Here

non-Gaussian

1/k^2 dependence !!
Galaxies, minihalos !!!
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FIG. 2: The marginalized error on fNL as the function of the
number of the tracers in the single redshift bin 0.7 < z < 1.2.
The mass bins are divided such that they have the equal shot
noises.

surveys (see e.g., [7]). As for ℓ range, we consider
2 ≤ ℓ ≤ 400 .

In computing the Fisher matrix for the combination
of Euclid and SKA surveys, we adopt 9, 000 deg2 as the
area of the overlap region and we neglect the contribu-
tions from the derivative of the cross correlations between
Euclid and SKA for simplicity. We focus on constraints
on fNL and marginalize over the other parameters.

Before showing expected constraints from Euclid and
SKA surveys, let us check the dependence of the effi-
ciency of the multitracer technique on the overlapping
survey area and different mass binning, considering a sim-
ple case of two tracers observed by a Euclid-like survey.
In Fig. 1, we plot the marginalized error on fNL as a func-

tion of the overlap fraction Ω(12)
w /Ωw for a single redshift

bin 0.7 < z < 1.2 . Different curves represent different
mass binning varying the mass ratio M(2)/M(1) . Here
we assume that the sky coverages for both tracers are

the same, Ω(11)
w = Ω(22)

w ≡ Ωw. We find that the nonva-
nishing overlap region leads to improved constraints on
fNL , which becomes smallest in the case of the maximal
overlap. One can also see that in the case of the max-
imal overlap there is a critical value of the mass ratio
M(2)/M(1) which results in the tightest constraint. This
behavior can be understood as follows: once we fix the
mass ratio, the number density for each mass bin, N̄i(b),
is determined through Eq. (6) . Changing the value of the
mass ratio leads to the larger shot noise for one of the
mass-bins and smaller shot noise for the other. We find
that the tightest constraint is obtained when the shot
noise for the two mass bins becomes comparative. This
is the reason for our choice of separating masses by the
same number density, as explained above.

Next, we focus on the Euclid survey. Figure 2 shows
the marginalized constraints on fNL as a function of the
number of tracers for a single redshift bin 0.7 < z <
1.2 with the maximal overlap among tracers. We find
that the constraining power increases with NM . Even 2

 1
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0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2

σ
(f N

L)

maximal redshift zmax

5-tracers
mass bin : same number density

FIG. 3: The marginalized constraint on fNL as a function of
the maximum redshift, assuming the redshift range 0.2 < z <
zmax with width ∆z = 0.5. Here we take five tracers (mass
bins) for each redshift bin.
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FIG. 4: The expected marginalized constraints on fNL for
each survey and combinations.

tracers drastically improve the constraint, simply because
the multitracer technique does not take effect for the one
tracer case. Furthermore, combining multiple redshift
bins improves substantially the constraint, as is shown
in Fig. 3. We find that galaxy samples as far as z =
3.2 (sixth bin) contribute significantly to the constraint.
When five mass bins and eight redshift bins are taken
into account, the Euclid photometric survey can reach
σ(fNL) = 0.46 . Although the use of galaxies out to z =
4.2 is probably too optimistic, even in a more realistic
situation where we use redshift bins up to z = 2.7 (five
bins) the improvement is still significant, σ(fNL) = 0.66 .
In the reminder of the paper we conservatively adopt
zmax = 2.7 as the maximal redshift for Euclid.

Finally, Fig. 4 shows the expected marginalized con-
straints on fNL for each survey and their combina-
tions. The constraints on fNL from SKA1 and SKA2 are
σ(fNL) = 1.64 , 0.66 , respectively, which are consistent
with Ref. [7]. The results of SKA2 and SKA1 are compa-
rable to or relatively weaker than that from Euclid, pre-
sumably because the redshift information obtained from

Yamauchi, Takahashi, Oguri (2014)

continuum survey

Cosmology with SKA HI IM surveys Mario G. Santos

Figure 7: Left: Power spectrum of dark matter (solid) and HI (dashed) at z = 0.4 (blue, top) and z = 2.5
(red, bottom), with fNL = 10. Right: Forecast 1s error on fNL (top); HI Gaussian bias (middle); effective
IM survey volume (bottom). From Camera et al. (2013).

One of the most important features on horizon scales is primordial non-Gaussianity. Many
models of inflation predict a small amount of non-Gaussianity in the statistical distribution of pri-
mordial fluctuations. This produces a signal in the bispectrum, but also in the power spectrum
– since primordial non-Gaussianity induces a scale-dependent correction to the Gaussian bias:
b ! b+Db. This correction grows on large scales as Db µ fNLk�2 for primordial non-Gaussianity
of the local type, where fNL is the non-Gaussian parameter.

In Camera et al. (2013), an analysis is given of the constraining power of IM surveys over
non-Gaussianity; their results are summarised in Fig. 7. This shows that the forecast errors on
fNL can be taken down towards s fNL . 3 for a deep enough survey with sufficient dishes. We
recast their analysis according to the updated specifics of Table 2, and adopt a SKA1-MID IM
survey operating for 10,000 hours at a system temperature of 20 K. The chosen bandwidth is
therefore 350� 1050, where we keep the last, high-frequency bins between 1000 and 1050 MHz
for foreground removal. The bandwidth is further subdivided into constant frequency bins of 10
MHz width, collected into ‘chunks’ of 20 by 20 bins in order to construct a 65 by 65 tomographic
matrix. (To deal with the large number of bins, we use a block diagonal tomographic matrix where
we correct for the overlapping, as described in Camera et al. 2013.) Such a configuration eventually
yields a constraint on the primordial non-Gaussianity parameter

s fNL = 2.3, (7.2)

namely more than three times better than the current constraint from Planck (using the large-scale
structure convention).

SKA IM surveys will also allow us to test Einstein’s theory of general relativity for the first
time on horizon scales. One of the most interesting effects predicted by general relativity is the cor-
rection to the standard Newtonian approximation for the observed galaxy overdensity. The Kaiser
redshift-space distortion term is a relativistic correction that is significant on small scales. Further
relativistic corrections include other redshift terms (Doppler and gravitational), Sachs-Wolfe (SW)
type terms, and integrated contributions – from weak lensing magnification, time-delay and ISW
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Figure 7: Left: Power spectrum of dark matter (solid) and HI (dashed) at z = 0.4 (blue, top) and z = 2.5
(red, bottom), with fNL = 10. Right: Forecast 1s error on fNL (top); HI Gaussian bias (middle); effective
IM survey volume (bottom). From Camera et al. (2013).
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mordial fluctuations. This produces a signal in the bispectrum, but also in the power spectrum
– since primordial non-Gaussianity induces a scale-dependent correction to the Gaussian bias:
b ! b+Db. This correction grows on large scales as Db µ fNLk�2 for primordial non-Gaussianity
of the local type, where fNL is the non-Gaussian parameter.

In Camera et al. (2013), an analysis is given of the constraining power of IM surveys over
non-Gaussianity; their results are summarised in Fig. 7. This shows that the forecast errors on
fNL can be taken down towards s fNL . 3 for a deep enough survey with sufficient dishes. We
recast their analysis according to the updated specifics of Table 2, and adopt a SKA1-MID IM
survey operating for 10,000 hours at a system temperature of 20 K. The chosen bandwidth is
therefore 350� 1050, where we keep the last, high-frequency bins between 1000 and 1050 MHz
for foreground removal. The bandwidth is further subdivided into constant frequency bins of 10
MHz width, collected into ‘chunks’ of 20 by 20 bins in order to construct a 65 by 65 tomographic
matrix. (To deal with the large number of bins, we use a block diagonal tomographic matrix where
we correct for the overlapping, as described in Camera et al. 2013.) Such a configuration eventually
yields a constraint on the primordial non-Gaussianity parameter

s fNL = 2.3, (7.2)

namely more than three times better than the current constraint from Planck (using the large-scale
structure convention).

SKA IM surveys will also allow us to test Einstein’s theory of general relativity for the first
time on horizon scales. One of the most interesting effects predicted by general relativity is the cor-
rection to the standard Newtonian approximation for the observed galaxy overdensity. The Kaiser
redshift-space distortion term is a relativistic correction that is significant on small scales. Further
relativistic corrections include other redshift terms (Doppler and gravitational), Sachs-Wolfe (SW)
type terms, and integrated contributions – from weak lensing magnification, time-delay and ISW
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Constraining primordial non-Gaussianity via a multitracer technique with surveys by
Euclid and Square Kilometre Array
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We forecast future constraints on local-type primordial non-Gaussianity parameter fNL with a
photometric galaxy survey by Euclid, a continuum galaxy survey by Square Kilometre Array (SKA),
and their combination. We derive a general expression for the covariance matrix of the power
spectrum estimates of multiple tracers to show how the so-called multitracer technique improves
constraints on fNL. In particular we clarify the role of the overlap fraction of multiple tracers and
the division method of the tracers. Our Fisher matrix analysis indicates that stringent constraints
of σ(fNL) ! 1 can be obtained even with a single survey, assuming five mass bins. When Euclid
and SKA phase 1 (2) are combined, constraints on fNL are improved to σ(fNL) = 0.61 (0.50).

PACS numbers:

I. INTRODUCTION

Primordial non-Gaussianity of density fluctuations is
key to understanding the physics of the early Universe.
Among several types of primordial non-Gaussianity, the
local-type one, fNL, has been studied widely, partly be-
cause even the simplest inflationary models predict small
but nonvanishing values of fNL ofO(0.01). Here we quan-
tify non-Gaussianity of the local form as

Φ = φ+ fNL(φ−
〈

φ2
〉

) , (1)

where Φ and φ denote the Bardeen potential and an aux-
iliary random-Gaussian field.
Primordial non-Gaussianity has primarily been con-

strained from the bispectrum in cosmic microwave back-
ground (CMB) temperature fluctuations. Recently,
Planck [1] obtained a tight constraint of fNL = 2.7± 5.8
at 1σ statistical significance. A complementary way to
access non-Gaussianity is to measure its impact on large
scale structure. Luminous sources such as galaxies must
be most obvious tracers of the underlying dark matter
distributions with a bias. Primordial non-Gaussianity in-
duces the scale-dependent bias [2, 3] such that the effect
dominates at very large scales. Hence, based on a reason-
able assumption that the galaxy bias is linear and deter-
ministic on large scales, it has been shown that the galaxy
survey can effectively constrain fNL to the level compara-
ble to CMB temperature anisotropies [4, 5]. While clus-
tering analyses at large scales are limited due to cosmic
variance, Seljak [6] proposed a novel method to reduce
the cosmic variance using multiple tracers with different
biases, the so-called multitracer technique. This method

∗Email: yamauchi”at”resceu.s.u-tokyo.ac.jp

allows us to measure the scale-dependent bias accurately
even at large scales, leading to strong constraints on fNL.

Future wide and deep surveys with Euclid1 in op-
tical and infrared bands and Square Kilometre Array
(SKA) 2 in radio wavelengths will provide an unprece-
dented number of galaxies to measure the power spectra.
The radio continuum survey conducted with SKA cov-
ers 30, 000 deg2 out to high redshifts, though the redshift
information is not available. The authors in [7] found
that even without the redshift information the multi-
tracer technique improves constraints as σ(fNL) = O(1),
while weaker constraints of σ(fNL) = O(10) without
the multitracer technique. While the number of galax-
ies and covered area are smaller for the Euclid photo-
metric survey (15, 000 deg2), it provides redshift infor-
mation via photometric redshifts. Redshift information
is expected to be highly advantageous for constraining
fNL because the bias evolves strongly with redshift. As
we show below, each of these two surveys provides con-
straints of σ(fNL) = O(1) and constraints improve to
σ(fNL) = O(0.1) with their combination. To calculate
expected constraints, in this paper, we employ the Fisher
matrix formalism including the redshift binning as well
as the mass binning, taking the overlap of the two survey
regions into account.

1 See http://www.euclid-ec.org
2 See http://www.skatelescope.org
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FIG. 1: 1σ marginalized errors in as a function of comoving
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(bottom) for survey with Vsurvey = 10h−3Gpc3 and z = 1.
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FIG. 2: Same as Fig. 1 but for z = 2. The green dotted lines
represent the current limit from Planck [3, 4].

by summing over all possible triangular configurations.
The explicit expression is given by [32]

Fαβ =
kmax∑

k1,k2,k3=kmin

∂B

∂θα
·
[
C−1(B,B)

]
·
∂B

∂θβ
, (26)

where B = {BI
0(k1,k2,k3)}, I runs over the mass bins

(g1g2g3), and θα are free parameters to be determined
by observations. The marginalized expected 1σ error on
parameter θα from the Fisher matrix (26) is estimated
to be σ(θα) =

√
(F−1)αα . Assuming the Gaussian error

covariance, we obtain the covariance matrix for multiple
tracers as [8, 27, 32]

CIJ =
sBVsurvey

36Nt

×
[
P̂

(g1g
′

1)
0 (k1)P̂

(g2g
′

2)
0 (k2)P̂

(g3g
′

3)
0 (k3) + (perm)

]
, (27)

where sB is the symmetric factor describing the num-
ber of a given bispectrum triangle (sB = 6 , 2 , and 1
for equilateral, isosceles and general triangles, respec-
tively) and the quantity Nt = VB/k6F denotes the total
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number of available triangles with kF = 2π/V 1/3
survey and

VB = 8π2k1k2k3(∆k)3 being the fundamental frequency
and the volume of the fundamental cell in Fourier space,

respectively. Here, P̂ (g1g2)
0 is the averaged redshift-space

galaxy power spectrum including the shot-noise contam-

ination given by P̂
(gig

′

j)
0 (k) = P

(gig
′

j)
0 (k) + n−1

(gi)
δKgig′

j
. In

subsequent analysis we assume that both the frequency
gap and the minimum wavelength coincide with the fun-
damental frequency, namely kF = ∆k = kmin. More-
over, for the maximal wavelength we choose kmax =
π/(2Rmin) with Rmin such that σ(Rmin, z) = 0.5 [8].
For instance, kmax = 0.19 [hMpc−1] at z = 1 and
kmax = 0.35 [hMpc−1] at z = 2. Throughout this paper,
as our fiducial model we assume a ΛCDM cosmological
model with parameters: Ωm,0 = 0.318, Ωb,0 = 0.0495,
ΩΛ,0 = 0.6817, w = −1, h = 0.67, ns = 0.9619,
k0 = 0.05Mpc−1, σ8 = 0.835.

Let us consider two and three mass bins such that each
mass bin has the same galaxy number density, simply
because the tightest constraint for fNL is expected to be
obtained when the shot-noise contributions from all mass
bins become comparable. In the case of the two (three)
mass bins, we have the five (seven) parameters in the
Fisher matrix analysis: the four (six) bias parameters
and nonlinearity parameter fNL. The bias parameters
are fully marginalized over when deriving constraint on
fNL. When forecasting each nonlinearity parameter, we
neglect the other parameters. The fiducial values of the
nonlinearity parameters are set to zero and the fiducial
values of the linear and nonlinear bias parameters are
calculated for each redshift.

To see the impact of the multitracer technique in the
measurement of the galaxy bispectrum, we show the ex-
pected marginalized 1σ statistical errors on the nonlin-
earity parameters in Figs. 1 and 2, marginalizing over
the bias parameters. The fiducial survey parameters are
given by the survey volume Vsurvey = 10 h3Mpc−3 and
the redshifts z = 1 and z = 2. When we consider the sin-
gle tracer, σ(fNL) decreases rapidly as ng increases and
approach to the CV plateau in the large galaxy number
density limit. Once the galaxy number density is high
enough to reach the plateau, the further improvement in
the galaxy number density does not significantly improve

Yamauchi, SY, Takahashi (2016)
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trum have different redshift-, scale- and halo-mass de-
pendences. The correction to the bias roughly scales as
βfz/k2 for fNL, β2

fz
2/k4 for τNL, and βgz/k2 for gNL.

Because the correction to the bias from fNL is identi-
cal to the one from gNL = (βf/βg)fNL, fNL and gNL

are degenerate for a single tracer case. However, in the
case with multiple tracers, the different halo-mass depen-
dence of βf and βg would break their degeneracy [23]. On
the other hand, because the bias correction due to τNL

has larger dependences on the scale and redshift, its de-
tectability would be enhanced for a survey with larger
angular scale and higher redshift coverage. Thus, we ex-
pect that, with the multitracer technique, wide and deep
surveys will be powerful to probe higher-order PNG.

III. RESULTS

To study the required survey level needed to test
the consistency relation, we proceed to the Fisher
analysis. The Fisher matrix is defined by Fαβ =
∑

ℓ,I,J
∂ĈI(ℓ)
∂θα

(
Cov−1

)
IJ

∂ĈJ (ℓ)
∂θβ , where the indices I, J

run over the redshift and mass bins (i, b, b′), θα are
free parameters to be determined by observations, and
ĈI(ℓ) = Chh

i(bb′)(ℓ) + N−1
i(b)δ

K
bb′ is the observed power

spectrum including the shot noise contamination. The
marginalized expected 1σ error on θα is estimated to be
σ(θα) =

√
(F−1)αα. We adopt the covariant matrix for

multiple tracers whch are observed in different sky areas
with some overlap given in [16].
Before showing the expected constraints, we need to

specify the survey parameters. We consider the SKA
radio continuum survey, the Euclid photometric survey,
and their combination as future representative surveys
with significant high precisions. SKA covers 30, 000 deg2

out to z = 5, though there is only one redshift bin since
the redshift information is not available. Then we sim-
ply drop the redshift dependence in σSKA

lnM and lnMSKA
bias .

To infer the halo masses, we consider five radio galaxy
types such as star-forming galaxies, radio quite quasars,
radio-loud AGN (FRI and FRII), and starbursts. Fol-
lowing [30], we will assign these galaxy types the fol-
lowing halo mass: {MSFG,MRQQ,MFRI,MSB,MFRII} =
{1, 30, 102, 5 × 102, 103} in the unit of 1011h−1M⊙. In
order to have a plausible distribution for the halo
mass associated with each population, we introduce
the five separating masses M(1) = 0.9 × 1011h−1M⊙,

M(2) =
√
MSFGMRQQ, M(3) =

√
MRQQMFRI, M(4) =√

MFRIMSB, and M(5) =
√
MSBMFRII. With these,

the five mass bins can be defined through M(i) <
M < M(i+1) (i = 1, 2, 3, 4) and M > M(5). To
match the expected number density distribution of galax-
ies [27, 28], we adopt the gray-body factor ΓSKA1

(b) =

{0.013, 0.03, 0.1, 1, 1} and ΓSKA2
(b) = {0.2, 0.4, 1, 1, 1}, re-

spectively. As for Euclid, the covered area 15, 000 deg2

and the redshift range 0.2 < z < 2.7 are considered. The
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FIG. 1: Forecast 1σ marginalized contours in (fNL, τNL),
(gNL, τNL), and (fNL, gNL) planes with the vanishing fiducial
values of the nonlinear parameters. To see the dependence on
the minimal multipole we also plot the results for SKA with
ℓSKA
min = 3 in the dashed line.

redshift information is provided though photometric red-
shifts. Galaxy samples are then split into five redshift
bins with same interval ∆z = 0.5. Since photometric
surveys provide various galaxy properties such as lumi-
nosity, color, and stellar mass, which can be used to infer
the halo mass, we can further split the galaxy samples ac-
cording the estimated halo mass. We consider five mass
bins such that each mass bin of the same redshift bin has
the same number density, presumably because the tight-
est constraint is expected to be obtained when the shot
noises for the mass bins become comparable. For the
flux cut, we adopt the minimum observed mass for each
redshift bin, Mest,min/(1011h−1M⊙) = 0.7, 1, 2, 5, 10, and
set ΓEuclid

(b) = 1 instead. For the combination of these
surveys, the area of the overlap region is assumed to
be 9, 000 deg2 and we neglect the contributions from the
derivative of the cross-correlations for simplicity. In total
we include 22 = 8(SKA)+14(Euclid) nuisance parame-
ters to model the systematic errors as well as three non-
linear parameters. We choose σSKA

lnM,0 = 1,σEuclid
lnM,0 = 0.3,

and zero for the other parameters as fiducial values. To
calculate the Fisher matrix, we use 2 ≤ ℓ ≤ 400 for
SKA and 3 ≤ ℓ ≤ 400 for Euclid. We hereafter fo-
cus on constraints on fNL, τNL, and gNL, marginalizing
over the other parameters. Our fiducial model is a stan-
dard ΛCDM cosmological model with the parameters:
Ωm,0 = 0.318, Ωb,0 = 0.0495, ΩΛ,0 = 0.6817, w = −1,
h = 0.67, ns = 0.9619, k0 = 0.05Mpc−1, and σ8 = 0.835.
In order to see the impact of the higher-order PNG

on the parameter estimation, we first plot the 1σ ex-
pected marginalized contours in Fig. 1, in the case with
vanishing nonlinear parameters. Although the resultant
constraints on fNL are slightly weaker than the previous
results [16, 27] where τNL and gNL were neglected, the
constraints from both SKA and Euclid are still signifi-

Yamauchi, Takahashi (2015)

; a parameter related with 
the primordial bispectrum

(3-pt. func.)

; parameters related with 
the primordial trispectrum

(4-pt. func.)



SKA as a probe of EoR

Minihalos as biased tracers
(lots of works, …)
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ü virialized objects with the virial temperature

ü filled neutral gas
too low to cause the star formation
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total e↵ective area Atot [m2] 105 107
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beam width �✓ [arcmin] 9

integration time t [hour] 1000

TABLE II: The survey specifications for 21 cm observations

dataset �fNL �gNL/10
3 �⌧NL

CMB alone

Planck 4.0 41 610

COrE 2.0 18 160

SKA 1.4 2.3 28

+Planck 1.3 2.3 28

+COrE 1.1 2.2 27

FFTT 0.51 0.79 0.59

+Planck 0.50 0.78 0.58

+COrE 0.48 0.75 0.58

TABLE III: Constraints on fNL, gNL and ⌧NL at 1� with
other parameters being marginalized over.

ton model [45–49] and mixed modulated reheating and
inflaton model [8, 52] in Fig. 2. As seen from the figure,
SKA can di↵erentiate mixed models when |fNL| > 2.
With the sensitivity of FFTT, even when fNL < O(1),
we can di↵erentiate multi-field nature of the model.

As demonstrated in this paper, future observations of
21 cm angular power spectrum from minihalo would be
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a powerful tool to probe primordial non-Gaussianity, es-
pecially the trispectrum. By using this probe, we can
further elucidate the mechanism of the inflationary Uni-
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a powerful tool to probe primordial non-Gaussianity, es-
pecially the trispectrum. By using this probe, we can
further elucidate the mechanism of the inflationary Uni-

Powerful to discriminate large NG models (multi-inflation) !!!



Higher NGs in multi-scalar inf.
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How to discriminate?

• Higher order ?

• Smaller scales?

SKA ??



SKA as a probe of EoR

Matter fluctuations in EoR
(lots of works, …)

Kohri, et al. (2013)

Ø High-z è “gravitational“ non-linearity is not so large (~1 Mpc?)

Tegmark et al. (2004)

δns δαs δβs

Planck 4.11× 10−3 6.59× 10−3 9.95× 10−3

Planck + SKA phase1 2.03× 10−3 2.90× 10−3 2.21× 10−3

Planck + SKA phase2 1.73× 10−3 2.36× 10−3 1.52× 10−3

Planck + Omniscope 6.04× 10−4 1.07× 10−3 7.31× 10−4

CMBpol 2.10× 10−3 2.36× 10−3 4.37× 10−3

CMBpol + SKA phase1 1.46× 10−3 2.07× 10−3 1.61× 10−3

CMBPol + SKA phase2 1.33× 10−3 1.84× 10−3 1.21 ×10−3

CMBpol + Omniscope 5.53× 10−4 1.00× 10−3 6.86× 10−4

COrE 2.13× 10−3 2.43× 10−3 4.47× 10−3

COrE + SKA phase1 1.47× 10−3 2.09× 10−3 1.63× 10−3

COrE + SKA phase2 1.34× 10−3 1.85× 10−3 1.22× 10−3

COrE + Omniscope 5.54× 10−4 1.00× 10−3 6.87× 10−4

Table 4: 1σ uncertainties for ns,αs and βs from various data sets. We take kref =
0.05 Mpc−1 to derive these constraints.

quantities, we take kref = 0.05 Mpc−1 in the most analysis presented below. However,
we also discuss how this reference scale affects the determinations of ns,αs and βs at the
final part of this section. Then we set the fiducial values of these parameters (except
αs, βs) near the best fit of the Planck results (Planck + WMAP polarizations + high
L CMB data + BAO) [45] , and αs = 0, βs = 0, so that (ΩΛ,Ωbh2, h, τ, As, ns,αs, βs)
= (0.6914, 0.022161, 0.6777, 0.0952, 1, 0.9611, 0, 0).

The total Fisher matrix is given by

Fij = F (21cm)
ij + F (CMB)

ij , (47)

where i, j are subscript representing cosmological parameters. We report our results for
several combinations of experiments. As already mentioned above, although 21 cm ex-
periments enable us to probe the primordial power spectrum very precisely since they
can measure fluctuations smaller scales compared to those of CMB, regarding the de-
terminations of other cosmological parameters, CMB has more strong power. Since the
scale-dependence of the power spectrum has degeneracies with other cosmological param-
eters, reducing the uncertainties of such parameters is also important to precisely measure
ns,αs and βs.

In Fig. 3, we show projected constraints in the ns–αs and αs–βs planes where 2σ limits
are shown for the analysis from Planck, Planck + SKA (phase1 or phase2), Planck + Om-
niscope, CMBpol, CMBpol + SKA (phase1 or phase2), CMBpol + Omniscope and COrE,
COrE + SKA (phase1 or phase2), COrE + Omniscope. Uncertainties for each parameter
ns,αs and βs are summarized in Table 4. We note that the 1σ uncertainties are reported
in the table. Although CMB experiments can already give a very precise measurement of
ns at better than O(1%), when one includes the data from 21 cm fluctuations, especially
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SKA as a probe of EoR

Minihalos as a probe of smaller scales

Sekiguchi, Takahashi, Tashiro, SY (2017)

Shimabukuro, Ichiki, Inoue, SY (2014), …

ü virialized objects with the virial temperature

ü filled neutral gas

ü corresponding scales;    

Iliev et al. (2002), …

too low to cause the star formation
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Figure 4. Expected constraints on the primordial power spectrum from observations of 21 cm signals
from minihalos in combination with the CMB. Contours depict 1� errors with other cosmological
parameters being marginalized. We assume 21 cm signals from minihalos can be measured down to
zmin = 6.

10�3�ns 10�3�↵s 10�3��s

Planck 7.7 10.7 15.1
COrE 3.2 2.9 6.5
SKA 4.6 2.9 1.5
FFTT 2.4 1.6 0.79
Planck+SKA 1.7 2.0 0.63
Planck+FFTT 1.3 1.3 0.44
COrE+SKA 1.2 1.6 0.39
COrE+FFTT 0.95 1.1 0.28

Table 3. Constraints on parameters for the primordial power spectrum. For 21 cm observations,
zmin = 6 is assumed.

On the other hand, as can be read o↵ by Eq. (3.2), the signal-to-noise ratio in obser-
vations of the 21cm signal from minihalos rapidly increases at low redshifts. Therefore, the
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Figure 6. Predictions for ns, ↵s, �s and r for the R
2-inflation (yellow), brane inflation (orange), the

natural-spectator model (green) and the inverse monomial-spectator model (purple). The upper left
panel shows the predictions in the ns – r plane, and the upper right one shows those in the ns – ↵s

plane. The lower panel shows the predictions in the ↵s – �s plane.

As seen in the upper left in Fig. 6, models discussed here can give almost degenerate
predictions for ns and r, however, when we compare the predictions of these models in the
ns – ↵s and the ↵s – �s planes, we can see that those models give di↵erent runnings, which
would be helpful to distinguish the model. It should be noted here that some models could
be easily di↵erentiated by using the expected constraint from future mininalo observations
on the ns – ↵s and ↵s – �s planes shown in Fig. 4. On the other hand, some models are still
di�cult to be distinguished from the expected constraint investigated in this paper.
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As seen in the upper left in Fig. 6, models discussed here can give almost degenerate
predictions for ns and r, however, when we compare the predictions of these models in the
ns – ↵s and the ↵s – �s planes, we can see that those models give di↵erent runnings, which
would be helpful to distinguish the model. It should be noted here that some models could
be easily di↵erentiated by using the expected constraint from future mininalo observations
on the ns – ↵s and ↵s – �s planes shown in Fig. 4. On the other hand, some models are still
di�cult to be distinguished from the expected constraint investigated in this paper.

– 17 –

We can distinguish !
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Figure 4. Expected constraints on the primordial power spectrum from observations of 21 cm signals
from minihalos in combination with the CMB. Contours depict 1� errors with other cosmological
parameters being marginalized. We assume 21 cm signals from minihalos can be measured down to
zmin = 6.

10�3�ns 10�3�↵s 10�3��s

Planck 7.7 10.7 15.1
COrE 3.2 2.9 6.5
SKA 4.6 2.9 1.5
FFTT 2.4 1.6 0.79
Planck+SKA 1.7 2.0 0.63
Planck+FFTT 1.3 1.3 0.44
COrE+SKA 1.2 1.6 0.39
COrE+FFTT 0.95 1.1 0.28

Table 3. Constraints on parameters for the primordial power spectrum. For 21 cm observations,
zmin = 6 is assumed.

On the other hand, as can be read o↵ by Eq. (3.2), the signal-to-noise ratio in obser-
vations of the 21cm signal from minihalos rapidly increases at low redshifts. Therefore, the
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Observational inflation cosmology

• Higher order 

• Smaller scales

SKA
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Constraining primordial non-Gaussianity via a multitracer technique with surveys by
Euclid and Square Kilometre Array

Daisuke Yamauchi,1, ∗ Keitaro Takahashi,2 and Masamune Oguri1, 3, 4

1 Research Center for the Early Universe, Graduate School of Science,
The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

2 Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
3 Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

4Kavli Institute for the Physics and Mathematics of the Universe,
The University of Tokyo, Kashiwa, Chiba, 277-8568, Japan

We forecast future constraints on local-type primordial non-Gaussianity parameter fNL with a
photometric galaxy survey by Euclid, a continuum galaxy survey by Square Kilometre Array (SKA),
and their combination. We derive a general expression for the covariance matrix of the power
spectrum estimates of multiple tracers to show how the so-called multitracer technique improves
constraints on fNL. In particular we clarify the role of the overlap fraction of multiple tracers and
the division method of the tracers. Our Fisher matrix analysis indicates that stringent constraints
of σ(fNL) ! 1 can be obtained even with a single survey, assuming five mass bins. When Euclid
and SKA phase 1 (2) are combined, constraints on fNL are improved to σ(fNL) = 0.61 (0.50).

PACS numbers:

I. INTRODUCTION

Primordial non-Gaussianity of density fluctuations is
key to understanding the physics of the early Universe.
Among several types of primordial non-Gaussianity, the
local-type one, fNL, has been studied widely, partly be-
cause even the simplest inflationary models predict small
but nonvanishing values of fNL ofO(0.01). Here we quan-
tify non-Gaussianity of the local form as

Φ = φ+ fNL(φ−
〈

φ2
〉

) , (1)

where Φ and φ denote the Bardeen potential and an aux-
iliary random-Gaussian field.
Primordial non-Gaussianity has primarily been con-

strained from the bispectrum in cosmic microwave back-
ground (CMB) temperature fluctuations. Recently,
Planck [1] obtained a tight constraint of fNL = 2.7± 5.8
at 1σ statistical significance. A complementary way to
access non-Gaussianity is to measure its impact on large
scale structure. Luminous sources such as galaxies must
be most obvious tracers of the underlying dark matter
distributions with a bias. Primordial non-Gaussianity in-
duces the scale-dependent bias [2, 3] such that the effect
dominates at very large scales. Hence, based on a reason-
able assumption that the galaxy bias is linear and deter-
ministic on large scales, it has been shown that the galaxy
survey can effectively constrain fNL to the level compara-
ble to CMB temperature anisotropies [4, 5]. While clus-
tering analyses at large scales are limited due to cosmic
variance, Seljak [6] proposed a novel method to reduce
the cosmic variance using multiple tracers with different
biases, the so-called multitracer technique. This method

∗Email: yamauchi”at”resceu.s.u-tokyo.ac.jp

allows us to measure the scale-dependent bias accurately
even at large scales, leading to strong constraints on fNL.

Future wide and deep surveys with Euclid1 in op-
tical and infrared bands and Square Kilometre Array
(SKA) 2 in radio wavelengths will provide an unprece-
dented number of galaxies to measure the power spectra.
The radio continuum survey conducted with SKA cov-
ers 30, 000 deg2 out to high redshifts, though the redshift
information is not available. The authors in [7] found
that even without the redshift information the multi-
tracer technique improves constraints as σ(fNL) = O(1),
while weaker constraints of σ(fNL) = O(10) without
the multitracer technique. While the number of galax-
ies and covered area are smaller for the Euclid photo-
metric survey (15, 000 deg2), it provides redshift infor-
mation via photometric redshifts. Redshift information
is expected to be highly advantageous for constraining
fNL because the bias evolves strongly with redshift. As
we show below, each of these two surveys provides con-
straints of σ(fNL) = O(1) and constraints improve to
σ(fNL) = O(0.1) with their combination. To calculate
expected constraints, in this paper, we employ the Fisher
matrix formalism including the redshift binning as well
as the mass binning, taking the overlap of the two survey
regions into account.

1 See http://www.euclid-ec.org
2 See http://www.skatelescope.org
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Most probable?

• Cosmological constant

èshould be resolved: why so small? 
why now?

resolved by string landscape picture? 

not allowed by swampland conjecture ??

Obied, Ooguri, Spodyneiko, Vafa (2018)

from https://www.kitp.ucsb.edu/activities/stringvacua20

time (log scale)

energy density 
(log scale)

cosmological 
constant

dark matter

radiation

Susskind, Weinberg, …

cosmological constant; w = -1



Inflation like

• Quintessence (potential driven)
Lots of models …

(like an inflation zoo …)

equation of state parameter is

c.f. cosmological constant; w = -1

k-essence

would be smaller than -1 .. (violation of energy condition?)



Thawing and freezing

• Quintessence (potential driven)

Lots of models …

(like an inflation zoo …)

Basically, two types of quintessence model 

Thawing model Freezing model (tracker)

See, e.g., Caldwell and Linder (2005), …

e.g.,

starts slow-rolling (thawing)

around the present time 

e.g.,

fast rolling àslow rolling (freezing) 

motivated by SUGRA, …



Thawing and freezing

• Quintessence (potential driven)

Evolution of equation of state

Freezing model 3

FIG. 1: Evolution of w(a) for inverse power-law potentials: V = M4(M/φ)α. The upper plot corresponds to the α = 1 case
and the lower one corresponds to the α = 1/4 case. The solid (black) lines denote the numerical result, the dashed (blue) lines
denote the second order solution w2(a) given by Eq. (9), and the dotted lines denote the first order solution wws(a) Eq. (10).

we find, to all orders in ρφ(0)
/ρB or in Ωφ,

w(a) = w(0) + δw = w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ0

1− Ωφ0
a−3w(0) −

(1 − w2
(0))w(0)

1− 3w(0) + 12w2
(0)

(

Ωφ0

1− Ωφ0

)2

a−6w(0) + . . .

= w(0) +
∞
∑

n=1

(−1)n−1w(0)(1− w2
(0))

2n(n+ 1)w2
(0) − (n+ 1)w(0) + 1

(

Ωφ0

1− Ωφ0

)n

a−3nw(0) ,

= w(0) +
∞
∑

n=1

(−1)n−1w(0)(1− w2
(0))

2n(n+ 1)w2
(0) − (n+ 1)w(0) + 1

(

Ωφ(a)

1− Ωφ(a)

)n

, (8)

= w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ(a) +
(1− w2

(0))w
2
(0)(8w(0) − 1)

(1− 2w(0) + 4w2
(0))(1− 3w(0) + 12w2

(0))
Ωφ(a)

2

+
2(1− w2

(0))w
3
(0)(4w(0) − 1)(18w(0) + 1)

(1− 2w(0) + 4w2
(0))(1− 3w(0) + 12w2

(0))(1 − 4w(0) + 24w2
(0))

Ωφ(a)
3 + . . .

Eq. (8) is our main result.1 In the last equation, we have also expanded in terms of Ωφ(a) using (Ωφ(a)/(1−Ωφ(a)))n =
Ωφ(a)n(

∑

∞

m=0 Ωφ(a)m)n. Up to the second order in Ωφ, the solution becomes

w2(a) = w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ(a) +
(1− w2

(0))w
2
(0)(8w(0) − 1)

(1− 2w(0) + 4w2
(0))(1 − 3w(0) + 12w2

(0))
Ωφ(a)

2. (9)

Note that w(a) = −1 if w(0) = −1 and hence the cosmological constant is contained in our w(a). This w(a) (or w2(a))
agrees with the solution found in [8] (their Eq. (33)) up to the first order in Ωφ:

wws(a) = w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ(a). (10)

1 The infinite series in Eq. (8) can be written in terms of the hypergeometric functions.

n=1

early time present

n=1/4

Chiba (2010)

9

FIG. 4: w(a) for (a) the axion-like potential, V = M4[1 − cosφ], for (b) the logarithmic potential, V = M4 log φ, and for
(c) the quadratic potential, V = m2φ2/2. The solid (black) curve is the numerical solution, the dotted (blue) curve gives our
approximation, and the dashed (red) curve gives the approximation in [7].

(c) quadratic potential [14]:

V (φ) =
1

2
m2φ2, (44)

where M , f and m are constants. The first example is considered in [7], and the second example corresponds to the
potential without maximum/minimum, and the third example corresponds to the concave potential V ′′ > 0 so that
K < 1. We fix Ωφ0 = 0.74 and take f = 1 in the reduced Planck units and choose φi so that w0 ≃ −0.9. The results
are shown in Fig. 4.
For all cases, we find fairly good agreement with the numerical solutions: For case (a), the relative error (the

difference between our approximation and the numerical solution), |δw/w|, is less than 0.3% while it is less than 0.1%
for the approximation by [7]. For case (b), |δw/w| ! 0.3% and for case (c) it is less than 0.7%. Note that the potential
does not have a maximum for the latter two cases and the approximation of [7] is no longer available. To check the
slow-roll conditions Eq. (37) and Eq. (38), we compute Γ, V ′′/V at φi: Γ = 1.33, 0.77, 0.50; |V ′′/V | = 0.31, 0.28, 0.22,
respectively.3

B. Comparison with Other Parametrizations

Finally we compare our parametrization with other parametrizations of w(a).
The most frequently used functional form is the linear approximation of w(a) at a = 1, the so-called Chevallier-

Polarski-Linder parameterization, wlinear(a), Eq. (1) [6].
Another parametrization of w(a) closely related our approach is that by Crittenden et al.[3]. Instead of expanding

the potential, they expanded the slow-roll parameter around φ0 in linear order:

κ(φ) =
V ′

(1 + β)V
= κ0 + κ1(φ− φ0). (45)

Resulting w, denoted as wcmp(a), is written as [3]

1 + wcmp(a) =
1

3
κ2
0Ω

−2κ1/3
φ0 a−2κ1F (a)−(4κ1+6)/3

= (1 + w0)Ω
−(2κ1+3)/3
φ0 a−2κ1F (a)−(4κ1+6)/3, (46)

3 It is to be noted that the slow-roll conditions Eq. (37) and Eq. (38) are required for the consistency of the solution Eq. (31) and define
the range of validity of the solution; otherwise the expansion of the potential Eq. (18) and |1+w| ≪ 1 cannot be trusted. However, this
does not imply that Eq. (31) cannot be used for |V ′′/V | ≫ 1 (or K ≫ 1), but rather simply that we cannot trust such an extrapolation.
Interestingly, for axion case (and other hilltop quintessence model), it is shown that approximation Eq. (31) with K evaluated at the
maximum of the potential agrees excellently with the numerical solution even for K = 4 [7].

Thawing model 

early time present

Chiba (2009)



Thawing and freezing

• Quintessence (potential driven)

Evolution of equation of state

Freezing modelThawing model 
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The Limits of Quintessence

R. R. Caldwell
Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755

Eric V. Linder
Physics Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720

(Dated: October 29, 2018)

We present evidence that the simplest particle-physics scalar-field models of dynamical dark en-
ergy can be separated into distinct behaviors based on the acceleration or deceleration of the field as
it evolves down its potential towards a zero minimum. We show that these models occupy narrow
regions in the phase-plane of w and w′, the dark energy equation-of-state and its time-derivative
in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits
how closely a scalar field can resemble a cosmological constant. These results, indicating a desired
measurement resolution of order σ(w′) ≈ (1 + w), define firm targets for observational tests of the
physics of dark energy.

Observations and experiments at the close of the
20th century have transformed our understanding of the
physics of the Universe. A consistent picture has emerged
indicating that nearly three-quarters of the cosmos is
made of “dark energy” — some sort of gravitationally
repulsive material responsible for the accelerated expan-
sion of the Universe (for reviews see [1, 2, 3]). Proposals
for the dark energy include Einstein’s cosmological con-
stant (Λ), or a dynamical field such as quintessence. Here
we show how scalar field dynamics separates into distinct
behaviors which, through future cosmological measure-
ments, can reveal the nature of the new physics acceler-
ating our universe.

Einstein’s cosmological constant (Λ) is attributed to
the quantum zero-point energy of the particle physics
vacuum, with a constant energy density ρ, pressure p
and an equation-of-state w ≡ p/ρ = −1. In contrast,
quintessence is a proposed time-varying, inhomogeneous
field with a spatially-averaged equation-of-state w > −1
[4, 5, 6, 7, 8]. The simplest physical model consists of
a scalar field, slowly rolling in a potential characterized
by an extremely low mass. (This is similar to inflation,
the period of accelerated expansion in the early universe,
but at an energy scale many orders of magnitude lower.)
Since a scalar field evolving in a very shallow potential
may be indistinguishable from a Λ, the task of elucidat-
ing the physics of dark energy becomes difficult if ob-
servations continue to find that w is close to −1, e.g.
[9, 10, 11]. In this letter, we examine the likely behav-
ior of scalar fields and characterize them into two distinct
classes, based on their evolution in the w−w′ phase space.
These results should help define targets for observational
and experimental tests of the physics of dark energy.

Our approach is a new take on a familiar system, the
scalar field. By emphasizing the dynamics, we discover
restricted regions of the trajectories of canonical scalar
field models in “position” and “velocity” — the value
of the equation-of-state ratio w and its time variation
w′. While there is a myriad of scalar field models mo-

tivated by particle physics beyond the standard model,
this treatment allows a broad, model-independent assess-
ment of a quintessence scalar field slowly relaxing in a
potential.

The physics is straightforward: the field φ will seek to
roll towards the minimum of its potential V , according
to the Klein-Gordon equation φ̈ + 3Hφ̇ = −dV/dφ. The
rate of evolution is driven by the slope of the potential
and damped by the cosmic expansion through the Hubble

FIG. 1: The w − w′ phase space occupied by thawing and
freezing fields is indicated by the shaded regions. No strong
constraints on this range of dark energy properties exist at
present. The fading at the top of the freezing region indicates
the approximate nature of this boundary. Freezing models
start above this line, but pass below it by a red shift z ∼ 1.
The short-dashed line shows the boundary between field evo-
lution accelerating and decelerating down the potential. Fu-
ture cosmological observations will aim to discriminate be-
tween these two fundamental scenarios.
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Caldwell and Linder (2005)

To discriminate these models,
It should be important to observe
not only equation of state but also
its time dependence ! 



Modified gravity

• Scalar tensor theory

è non-minimally coupled scalar field

Is there any guiding principles?

• from the first principle (string theory, or …?) (top-down)

• Based on some philosophy (respect some symmetry, stability condition, …)

è free from ghost instabilities !!

could also include the derivative coupling

In general, we can consider the Lagrangian
which has infinite terms with including higher order derivatives …   

Infinite possible theories ?



Modified gravity

• Horndeski theory
see, e.g.,  Kobayashi, 1901.07183 (review paper)

Horndeski theory and beyond 6

The generalized Galileon [19] is a further generalization of the covariant Galileon [17,

18] retaining second-order field equations. More precisely, first one determines the most

general scalar-field theory on a fixed Minkowski background which yields a second-order

field equation, assuming that the Lagrangian contains at most second derivatives of φ

and is polynomial in ∂µ∂νφ. One then promotes the theory to a covariant one in the same

way as above by adding appropriate (unique) counter terms so that the field equations
are of second order both for φ and the metric. The generalized Galileon can thus be

obtained. It should be noted that this procedure can be done in arbitrary spacetime

dimensions. In four dimensions, the Lagrangian for the generalized Galileon is given

by [19]

L = G2(φ, X)−G3(φ, X)✷φ+G4(φ, X)R +G4X

[

(✷φ)2 − φµνφµν

]

+ G5(φ, X)Gµνφµν −
G5X

6

[

(✷φ)3 − 3✷φφµνφµν + 2φµνφ
νλφµ

λ

]

, (8)

where G2, G3, G4, and G5 are arbitrary functions of φ and X . Here and hereafter we

use the notation fX := ∂f/∂X and fφ := ∂f/∂φ for a function f of φ and X .
The generalized Galileon (8) is now known as the Horndeski theory [20], i.e., the

most general scalar-tensor theory having second-order field equations in four dimensions.

However, Horndeski determined the theory starting from the different assumptions

than those made for deriving the generalized Galileon, and the original form of the

Lagrangian [20] looks very different from (8):

L = δαβγµνσ

[

κ1φ
µ
αR

νσ
βγ +

2

3
κ1Xφ

µ
αφ

ν
βφ

σ
γ + κ3φαφ

µR νσ
βγ + 2κ3Xφαφ

µφν
βφ

σ
γ

]

+ δαβµν
[

(F + 2W )R µν
αβ + 2FXφ

µ
αφ

ν
β + 2κ8φαφ

µφν
β

]

− 6 (Fφ + 2Wφ −Xκ8)✷φ+ κ9. (9)

Here, δα1α2...αn

µ1µ2...µn
:= n!δ[α1

µ1
δα2

µ2
...δαn]

µn
is the generalized Kronecker delta, and κ1, κ3, κ8, and

κ9 are arbitrary functions of φ and X . We have another function F = F (φ, X), but
this must satisfy FX = 2 (κ3 + 2Xκ3X − κ1φ) and hence is not independent. We also

have a function of φ, W = W (φ), which can be absorbed into the redefinition of F :

Fold + 2W → Fnew. Thus, we have the same number of free functions of φ and X as in

the generalized Galileon theory. Nevertheless, the equivalence between the two theories

is apparently far from trivial.

In [21] it was shown that the generalized Galileon can be mapped to the Horndeski
theory by identifying Gi(φ, X) as

G2 = κ9 + 4X

∫ X

dX ′ (κ8φ − 2κ3φφ) , (10)

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ), (11)

G4 = 2F − 4Xκ3, (12)

G5 = −4κ1, (13)

Lagrangian;

Horndeski theory and beyond 6

The generalized Galileon [19] is a further generalization of the covariant Galileon [17,

18] retaining second-order field equations. More precisely, first one determines the most

general scalar-field theory on a fixed Minkowski background which yields a second-order

field equation, assuming that the Lagrangian contains at most second derivatives of φ

and is polynomial in ∂µ∂νφ. One then promotes the theory to a covariant one in the same

way as above by adding appropriate (unique) counter terms so that the field equations
are of second order both for φ and the metric. The generalized Galileon can thus be

obtained. It should be noted that this procedure can be done in arbitrary spacetime

dimensions. In four dimensions, the Lagrangian for the generalized Galileon is given

by [19]

L = G2(φ, X)−G3(φ, X)✷φ+G4(φ, X)R +G4X

[

(✷φ)2 − φµνφµν

]

+ G5(φ, X)Gµνφµν −
G5X

6

[

(✷φ)3 − 3✷φφµνφµν + 2φµνφ
νλφµ

λ

]

, (8)

where G2, G3, G4, and G5 are arbitrary functions of φ and X . Here and hereafter we

use the notation fX := ∂f/∂X and fφ := ∂f/∂φ for a function f of φ and X .
The generalized Galileon (8) is now known as the Horndeski theory [20], i.e., the

most general scalar-tensor theory having second-order field equations in four dimensions.

However, Horndeski determined the theory starting from the different assumptions

than those made for deriving the generalized Galileon, and the original form of the

Lagrangian [20] looks very different from (8):

L = δαβγµνσ

[

κ1φ
µ
αR

νσ
βγ +

2

3
κ1Xφ

µ
αφ

ν
βφ

σ
γ + κ3φαφ

µR νσ
βγ + 2κ3Xφαφ

µφν
βφ

σ
γ

]

+ δαβµν
[

(F + 2W )R µν
αβ + 2FXφ

µ
αφ

ν
β + 2κ8φαφ

µφν
β

]

− 6 (Fφ + 2Wφ −Xκ8)✷φ+ κ9. (9)

Here, δα1α2...αn

µ1µ2...µn
:= n!δ[α1

µ1
δα2

µ2
...δαn]

µn
is the generalized Kronecker delta, and κ1, κ3, κ8, and

κ9 are arbitrary functions of φ and X . We have another function F = F (φ, X), but
this must satisfy FX = 2 (κ3 + 2Xκ3X − κ1φ) and hence is not independent. We also

have a function of φ, W = W (φ), which can be absorbed into the redefinition of F :

Fold + 2W → Fnew. Thus, we have the same number of free functions of φ and X as in

the generalized Galileon theory. Nevertheless, the equivalence between the two theories

is apparently far from trivial.

In [21] it was shown that the generalized Galileon can be mapped to the Horndeski
theory by identifying Gi(φ, X) as

G2 = κ9 + 4X

∫ X

dX ′ (κ8φ − 2κ3φφ) , (10)

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ), (11)

G4 = 2F − 4Xκ3, (12)

G5 = −4κ1, (13)

Horndeski theory and beyond 5

dimensions) having these properties is given by [16]

L = c1φ+ c2X − c3X✷φ

+
c4
2

{

X
[

(✷φ)2 − ∂µ∂νφ∂
µ∂νφ

]

+✷φ∂µφ∂νφ∂µ∂νφ− ∂µX∂
µX
}

+
c5
15

{

−2X
[

(✷φ)3 − 3✷φ∂µ∂νφ∂
µ∂νφ+ 2∂µ∂νφ∂

ν∂λφ∂λ∂
µφ
]

+ 3∂µφ∂µX
[

(✷φ)2 − ∂µ∂νφ∂
µ∂νφ

]

+ 6✷φ∂µX∂
µX − 6∂µ∂νφ∂µX∂νX

}

, (4)

where X := −ηµν∂µφ∂νφ/2 and c1, · · · , c5 are constants. This can be written in a more

compact form by making use of integration by parts as

L = c1φ+ c2X − c3X✷φ+ c4X
[

(✷φ)2 − ∂µ∂νφ∂
µ∂νφ

]

−
c5
3
X
[

(✷φ)3 − 3✷φ∂µ∂νφ∂
µ∂νφ+ 2∂µ∂νφ∂

ν∂λφ∂λ∂
µφ
]

. (5)

Note that the field equation is of second order even though the Lagrangian depends on

the second derivatives of the field.

The Lagrangian (5) describes a scalar-field theory on a fixed Minkowski background.

One can introduce gravity and consider a covariant version of (5) by promoting ηµν to

gµν and ∂µ to ∇µ. However, since covariant derivatives do not commute, the naive
covariantization leads to higher derivatives in the field equations, which would be

dangerous. For example, one would have derivatives of the Ricci tensor Rµν ,

c4X∇µ [∇µ∇ν∇νφ−∇ν∇µ∇νφ] = −c4X∇µ (Rµν∇νφ) , (6)

in the scalar-field equation of motion. Such higher derivative terms can be canceled

by adding curvature-dependent terms appropriately to Eq. (5). The covariant version

of (5) that leads to second-order field equations both for the scalar field and the metric

is given by [17]

L = c1φ+ c2X − c3X✷φ+
c4
2
X2R + c4X

[

(✷φ)2 − φµνφµν

]

+ c5X
2Gµνφµν −

c5
3
X
[

(✷φ)3 − 3✷φφµνφµν + 2φµνφ
νλφµ

λ

]

, (7)

where R is the Ricci tensor, Gµν is the Einstein tensor, φµ := ∇µφ, φµν := ∇µ∇νφ

and now X := −gµνφµφν/2. Here, the fourth term in the first line and the first term

in the second line are the “counter terms” introduced to remove higher derivatives

in the field equations. The counter terms are unique. This theory is called the
covariant Galileon. Since the field equations derived from the Lagrangian (7) involve

first derivatives of φ, the Galilean shift symmetry is broken in the covariant Galileon

theory. Only the second property of the Galileon, i.e., the second-order nature of the

field equations, is maintained in the course of covariantization. The covariant Galileon

theory (7) is formulated in four spacetime dimensions, but it can be extended to arbitrary

dimensions [18].

Horndeski theory and beyond 5
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where R is the Ricci tensor, Gµν is the Einstein tensor, φµ := ∇µφ, φµν := ∇µ∇νφ

and now X := −gµνφµφν/2. Here, the fourth term in the first line and the first term

in the second line are the “counter terms” introduced to remove higher derivatives

in the field equations. The counter terms are unique. This theory is called the
covariant Galileon. Since the field equations derived from the Lagrangian (7) involve

first derivatives of φ, the Galilean shift symmetry is broken in the covariant Galileon

theory. Only the second property of the Galileon, i.e., the second-order nature of the

field equations, is maintained in the course of covariantization. The covariant Galileon

theory (7) is formulated in four spacetime dimensions, but it can be extended to arbitrary

dimensions [18].

The most general scalar-tensor theory 
having second-order field equations in 4D

are arbitrary functions of       and 

Horndeski theory and beyond 6

The generalized Galileon [19] is a further generalization of the covariant Galileon [17,

18] retaining second-order field equations. More precisely, first one determines the most

general scalar-field theory on a fixed Minkowski background which yields a second-order

field equation, assuming that the Lagrangian contains at most second derivatives of φ

and is polynomial in ∂µ∂νφ. One then promotes the theory to a covariant one in the same

way as above by adding appropriate (unique) counter terms so that the field equations
are of second order both for φ and the metric. The generalized Galileon can thus be

obtained. It should be noted that this procedure can be done in arbitrary spacetime

dimensions. In four dimensions, the Lagrangian for the generalized Galileon is given

by [19]

L = G2(φ, X)−G3(φ, X)✷φ+G4(φ, X)R +G4X

[

(✷φ)2 − φµνφµν

]

+ G5(φ, X)Gµνφµν −
G5X

6

[

(✷φ)3 − 3✷φφµνφµν + 2φµνφ
νλφµ

λ

]

, (8)

where G2, G3, G4, and G5 are arbitrary functions of φ and X . Here and hereafter we

use the notation fX := ∂f/∂X and fφ := ∂f/∂φ for a function f of φ and X .
The generalized Galileon (8) is now known as the Horndeski theory [20], i.e., the

most general scalar-tensor theory having second-order field equations in four dimensions.

However, Horndeski determined the theory starting from the different assumptions

than those made for deriving the generalized Galileon, and the original form of the

Lagrangian [20] looks very different from (8):

L = δαβγµνσ

[

κ1φ
µ
αR

νσ
βγ +

2

3
κ1Xφ

µ
αφ

ν
βφ

σ
γ + κ3φαφ

µR νσ
βγ + 2κ3Xφαφ

µφν
βφ

σ
γ

]

+ δαβµν
[

(F + 2W )R µν
αβ + 2FXφ

µ
αφ

ν
β + 2κ8φαφ

µφν
β

]

− 6 (Fφ + 2Wφ −Xκ8)✷φ+ κ9. (9)

Here, δα1α2...αn

µ1µ2...µn
:= n!δ[α1

µ1
δα2

µ2
...δαn]

µn
is the generalized Kronecker delta, and κ1, κ3, κ8, and

κ9 are arbitrary functions of φ and X . We have another function F = F (φ, X), but
this must satisfy FX = 2 (κ3 + 2Xκ3X − κ1φ) and hence is not independent. We also

have a function of φ, W = W (φ), which can be absorbed into the redefinition of F :

Fold + 2W → Fnew. Thus, we have the same number of free functions of φ and X as in

the generalized Galileon theory. Nevertheless, the equivalence between the two theories

is apparently far from trivial.

In [21] it was shown that the generalized Galileon can be mapped to the Horndeski
theory by identifying Gi(φ, X) as

G2 = κ9 + 4X

∫ X

dX ′ (κ8φ − 2κ3φφ) , (10)

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ), (11)

G4 = 2F − 4Xκ3, (12)

G5 = −4κ1, (13)
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is the generalized Kronecker delta, and κ1, κ3, κ8, and

κ9 are arbitrary functions of φ and X . We have another function F = F (φ, X), but
this must satisfy FX = 2 (κ3 + 2Xκ3X − κ1φ) and hence is not independent. We also

have a function of φ, W = W (φ), which can be absorbed into the redefinition of F :

Fold + 2W → Fnew. Thus, we have the same number of free functions of φ and X as in

the generalized Galileon theory. Nevertheless, the equivalence between the two theories

is apparently far from trivial.

In [21] it was shown that the generalized Galileon can be mapped to the Horndeski
theory by identifying Gi(φ, X) as

G2 = κ9 + 4X

∫ X

dX ′ (κ8φ − 2κ3φφ) , (10)

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ), (11)

G4 = 2F − 4Xκ3, (12)

G5 = −4κ1, (13)

free from ghost instabilities associated with the higher derivative terms 
could have extra d.o.f.



Modified gravity

• Horndeski theory
see, e.g.,  Kobayashi, 1901.07183 (review paper)

Horndeski theory and beyond 6

The generalized Galileon [19] is a further generalization of the covariant Galileon [17,

18] retaining second-order field equations. More precisely, first one determines the most

general scalar-field theory on a fixed Minkowski background which yields a second-order

field equation, assuming that the Lagrangian contains at most second derivatives of φ

and is polynomial in ∂µ∂νφ. One then promotes the theory to a covariant one in the same

way as above by adding appropriate (unique) counter terms so that the field equations
are of second order both for φ and the metric. The generalized Galileon can thus be

obtained. It should be noted that this procedure can be done in arbitrary spacetime

dimensions. In four dimensions, the Lagrangian for the generalized Galileon is given

by [19]

L = G2(φ, X)−G3(φ, X)✷φ+G4(φ, X)R +G4X
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]

, (8)

where G2, G3, G4, and G5 are arbitrary functions of φ and X . Here and hereafter we

use the notation fX := ∂f/∂X and fφ := ∂f/∂φ for a function f of φ and X .
The generalized Galileon (8) is now known as the Horndeski theory [20], i.e., the

most general scalar-tensor theory having second-order field equations in four dimensions.

However, Horndeski determined the theory starting from the different assumptions

than those made for deriving the generalized Galileon, and the original form of the

Lagrangian [20] looks very different from (8):

L = δαβγµνσ

[

κ1φ
µ
αR
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βγ +
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3
κ1Xφ
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αφ

ν
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γ + κ3φαφ

µR νσ
βγ + 2κ3Xφαφ
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]

+ δαβµν
[

(F + 2W )R µν
αβ + 2FXφ

µ
αφ

ν
β + 2κ8φαφ

µφν
β

]

− 6 (Fφ + 2Wφ −Xκ8)✷φ+ κ9. (9)

Here, δα1α2...αn

µ1µ2...µn
:= n!δ[α1

µ1
δα2

µ2
...δαn]

µn
is the generalized Kronecker delta, and κ1, κ3, κ8, and

κ9 are arbitrary functions of φ and X . We have another function F = F (φ, X), but
this must satisfy FX = 2 (κ3 + 2Xκ3X − κ1φ) and hence is not independent. We also

have a function of φ, W = W (φ), which can be absorbed into the redefinition of F :

Fold + 2W → Fnew. Thus, we have the same number of free functions of φ and X as in

the generalized Galileon theory. Nevertheless, the equivalence between the two theories

is apparently far from trivial.

In [21] it was shown that the generalized Galileon can be mapped to the Horndeski
theory by identifying Gi(φ, X) as

G2 = κ9 + 4X

∫ X

dX ′ (κ8φ − 2κ3φφ) , (10)

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ), (11)

G4 = 2F − 4Xκ3, (12)

G5 = −4κ1, (13)

Lagrangian;

Due to the existence of non-minimal coupling between scalar d. o. f. and gravity,

That is, we can test  not only by cosmological observations
but also by local gravity test, GW experiments, and more.. 

in this theory, the gravitational law would be changed! 



Modified gravity

• Beyond ?
see, e.g.,  Kobayashi, 1901.07183 (review paper)

Horndeski theory: The most general scalar-tensor theory 
having second-order field equations in 4D

little bit strong?

Healthy extension

Degenerate Higher-Order Scalar-Tensor theories (DHOST theories)
see, e.g.,  Langlois, 1811.06271 (review paper)

Horndeski theory and beyond 25

4.1. Degenerate higher-order scalar-tensor theories

The first example of degenerate higher-order scalar-tensor (DHOST) theories beyond
Horndeski [150] was obtained by performing a disformal transformation [151]

gµν → g̃µν = C(φ, X)gµν +D(φ, X)φµφν . (108)

This is a generalization of the familiar conformal transformation, g̃µν = C(φ)gµν . The

disformal transformation (108) is invertible if

C(C −XCX + 2X2DX) ≠ 0. (109)

Since the disformal transformation contains derivatives of φ, the theory transformed

from Horndeski has higher-order field equations. Nevertheless, it is a degenerate theory

with (2 + 1) degrees of freedom because an invertible field redefinition does not change

the number of physical degrees of freedom [152, 153, 154]. This example implies the
existence of a wider class of healthy scalar-tensor theories than the Horndeski class.

Degenerate higher-order scalar-tensor theories have been constructed and

investigated systematically in [147, 155, 156, 157, 158, 159]. Let us follow Ref. [147]

and consider the extension of Horndeski’s G4 Lagrangian given by

L = f(φ, X)R+
5
∑

I=1

AI(φ, X)LI , (110)

where

L1 = φµνφ
µν , L2 = (✷φ)2, L3 = ✷φφµφνφµν

L4 = φµφµαφ
ανφν , L5 = (φµφνφµν)

2. (111)

These five constituents exhaust all the possible quadratic terms in second derivatives

of φ, and the Horndeski theory is the special case with A2 = −A1 = fX and

A3 = A4 = A5 = 0. The scalar field (respectively, the metric) corresponds to φ

(respectively, q) in the previous mechanical toy model. By inspecting the structure
of the highest derivative terms in (110),¶ one finds that the degeneracy conditions are

given by three equations relating the six functions in the Lagrangian, leaving three

arbitrary functions (except for some special cases). The degenerate theories whose

Lagrangian is of the form (110) are called quadratic DHOST theories. Note that one

is free to add to (110) the Horndeski terms G2(φ, X)−G3(φ, X)✷φ, because these two

terms are nothing to do with the degeneracy conditions.
Quadratic DHOST theories are classified into several subclasses [147, 156, 157]. Of

¶ We require the degeneracy in any coordinate systems. It is argued in [160] that one can relax this
requirement and consider theories that are degenerate when restricted to the unitary gauge.
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This is a generalization of the familiar conformal transformation, g̃µν = C(φ)gµν . The

disformal transformation (108) is invertible if

C(C −XCX + 2X2DX) ≠ 0. (109)
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and consider the extension of Horndeski’s G4 Lagrangian given by
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of φ, and the Horndeski theory is the special case with A2 = −A1 = fX and

A3 = A4 = A5 = 0. The scalar field (respectively, the metric) corresponds to φ
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arbitrary functions (except for some special cases). The degenerate theories whose

Lagrangian is of the form (110) are called quadratic DHOST theories. Note that one

is free to add to (110) the Horndeski terms G2(φ, X)−G3(φ, X)✷φ, because these two
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With so-called ``degeneracy conditions”, pathological extra d. o. f. doesn’t appear.



What is DE?

• Points for observations

üCosmological constant

üQuintessence models – thawing type

-- freezing type

ü Scalar-tensor theories – Horndeski, DHOST theories,…

measurement the gravitational law



Equation of state

l Expansion of the Universe

In principle,
if we could measure the long time history of the expansion rate of the Universe,

we can also get the information about the evolution of the ``equation of state”.

Perturbative 
parameterization ç CMB, LSS and SNe

Planck (2018)



Cosmological gravitational law

l Evolution of matter inhomogeneities in the Universe
In cosmology, we treat the spatial inhomogeneities of matter distributions,
(including galaxy distributions on large scales), as perturbations 
on the background homogeneous and isotropic Universe (FLRW Universe). 

Such a matter inhomogeneity evolves
through the gravitational interaction! 

Univ. of Chicago

valuable information about 
the ``cosmological” gravitational law!!



Linear growth

l Evolution of matter inhomogeneities in the Universe

see, e.g.,  Kobayashi, 1901.07183 (review paper)

Measure

the ``linear” growth of matter (DM) density contrast (inohomogeneities),

to find the cosmological gravitational law 

and test the scalar-tensor theories ! 

usually, parameterized as

a is a scale factor (time coordinate)

or

In GR, 
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Fig. 5. Marginalized posterior contours in the ⌦m-�8 plane (left) and in the ⌦m-S8(↵ = 0.45) plane (right), where S8(↵) ⌘ �8(⌦m/0.3)↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018b) with the same set of
cosmological parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB
lensing (Planck Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S8(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.

shear are known to be degenerate in the ⌦m-�8 plane. Cosmic
shear can tightly constrain a combination of cosmological pa-
rameters S8(↵) ⌘ �8(⌦m/0.3)

↵, which we adopt to quantify
cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2018a) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵ = 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800
+0.029
�0.028 and ⌦m = 0.162

+0.086
�0.044. Our HSC first-year cos-

mic shear analysis places a 3.6% fractional constraint on S8,
which is comparable to the results of DES (Troxel et al. 2018a)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780

+0.030
�0.033 for

↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018b) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018b).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018b). We also note that there are also some differences

22 P. Zarrouk et al.

Figure 18. Parameter contours for f�8, DA and H for the predictions by
the 5 companion papers using the same DR14Q dataset for traditional RSD
analyses. Blue contours show the results presented in this work in configu-
ration space, and red contours show the predictions by Hou et al. (2018) in
configuration space too using a second RSD modeling. The Fourier Space
based analyses are shown in green contours for the results by Gil-Marin
et al. (2018) using a third RSD modeling, in magenta contours for the re-
sults by Ruggeri et al. (2018) and in orange contours for Zhao et al. (2018),
both using redshift weighting techniques but with a different model.

Figure 19. Evolution of the BAO distances with redshift compared to the
prediction from the flat ⇤-CDM model with Planck parameters. The Hub-
ble distance DH is related to the Hubble parameter H by DH = c/H

and DM = (1 + z)DA where DM is the comoving angular diameter dis-
tance. The BAO results from this work using the eBOSS DR14 quasars are
represented by the * marker and are compared to previous analyses using
galaxies and Ly-↵ forests to probe different epochs.
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Figure 20. Left : Cosmological constraints in the ⌦⇤ vs ⌦m plane. Right:
Cosmological constraints in the w vs ⌦m plane. The inner and outer con-
tours show the 68 and 95% confidence-level two-dimensional marginalised
constraints. All contours are showed assuming a flat ⇤CDM-model. The
blue contour represents the cosmological constraints using BOSS DR12
galaxies, the red contour shows the gain when adding the eBOSS quasar
sample and the green contour also includes the results from Ly-↵ measure-
ments. All results are consistent with a ⇤CDM Universe.

Figure 21. Measurements of f�8(z) with redshift compared to the predic-
tion from the flat ⇤-CDM+GR model with Planck parameters. The f�8(z)

result presented in this work for the quasar sample is represented by the *
marker and is obtained using 3-multipole fit. The error bar represents the to-
tal systematic error that includes the statistical precision and the systematic
error related to the RSD modeling used in this analysis.

The GR prediction that � = 0.55 can not be accurately
tested given the statistical precision of the eBOSS quasar sample
only. Combining our data to the measurement of ⌦m from Planck
produces � = �0.2 ± 1.2. The lack of precision arises because
in the eBOSS quasar redshift range, ⌦m is close to 1 and the
sensitivity to � is therefore reduced as can be seen from the black
curves in Figure 21, which shows theoretical predictions on f�8

for different values of �.

As for the cosmological distances, the growth rate measure-
ment uncertainty should be reduced by a factor ⇠2 once the final
eBOSS sample will be complete. However, the clustering measure-
ments using the current eBOSS quasar sample represent the most
precise f�8 measurements to date in the almost unexplored redshift
range 1 < z < 2.

MNRAS 000, 1–25 (2017)

Zarrouk et al. (2018)
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SKA as a galaxy survey / HI intensity mapping

Figure 1. Predicted SKA constraints at various stages on the equation of state parameter of dark energy (with BOSS and

Planck priors).
3

instance, by measuring the BAO signature in the radio of the galaxy power spectrum, SKA will allow for precise
measurements of the equation of state of dark energy, w = p/⇢, of the form:

w = w0 + wa(1� a) , (1)

where p and ⇢ are the pressure and energy density of dark energy, w0 and wa are some real parameters and
a is the scale factor. In Fig. 1 one can see that assuming a Gaussian distribution around the fiducial model
w = �1, which corresponds to the cosmological constant as dark energy, the predicted SKA results combined
with Planck4 and Baryon Oscillation Spectroscopic Survey (BOSS)5 priors constrain considerably the allowed
region of parameters. The expected combined precision is compared with the one from Euclid mission.6

Furthermore, by studying weak gravitational lensing the measurement of the dark matter power spectrum
will be possible, and bounds on the mass and the number of neutrinos families can be obtained.

2.2 Testing gravity to the limit

As stated, testing the nature of dark matter or dark energy is a key issue in Cosmology. However, the e↵ect of
these putative entities can be manifestations of a yet unknown gravity theory beyond General Relativity.7 Thus,
testing gravity at the strong limit provides a deeper understanding on the nature of this fundamental interaction.
SKA, in particular, will be able to detect a vast number of pulsars, and binary systems of a pulsar orbiting a
black hole, hence providing rich information about strong gravity. Thousands of millisecond pulsars might be
detected, forming a “pulsar timing array” which can be a prime arena for detection of gravitational waves.8

On the other hand, General Relativity and alternative theories of gravity will be tested through gravitational
lensing observations. In general, there are three model dependent parameters which characterise the growth of
structures in any modified gravity theory.6 The first is the modified gravitational constant, GN µ̃(a, k), where
µ̃(a, k) is a model dependent correction in the Poisson equation, which can be expressed in the Fourier space as:

�2k2� = 8⇡GNa
2
⇢Dµ̃(a, k) , (2)

where k is the wavenumber and D is the gauge-invariant density contrast. The second is the anisotropic stress
or slip relation, �̃, which relates the two gauge invariant Bardeen potentials, � and  , which come from time

Santos et al. (2015)

Planck (2018)
Figure 2. SKA predictions for the constraints on the growth of structures index (including BOSS and Planck priors).

3

and spacial scalar perturbations of the metric, respectively:

 = µ̃(a, k)� , (3)

and the third one which is the growth rate, f(a, k), (or its index �):

f(a, k) =

✓
a
28⇡GN⇢

3H2

◆�

, (4)

where H = ȧ/a is the Hubble expansion rate. Therefore, this may discriminate between models of gravity. In
Fig. 2, we can see the improvement of the measurement of the equation of state parameter for dark energy over
the index of structure growth. In General Relativity, µ̃ = �̃ = 1 and � ⇡ 0.545. Thus, observational deviations
from these values are evidences of modified gravity models, which can allow for predicting dependencies on
the scale factor and on the wavenumber on the previous parameters. A particular example of such modified
gravity theories is the one which admits an extension of the well known f(R) theories with a non-minimal
coupling between matter and curvature,9 whose cosmological perturbations give specific relationships for those
parameters.10

Furthermore, it would also be interesting to investigate clusters rich in radiogalaxies in order to assess whether
there is evidence for interacting dark matter-dark energy models11–13 or modified gravity theories14 through
deviations from the virial theorem, which, at cosmic scales, is given by the so-called Layzer-Irvine equation.

2.3 Cosmic magnetism

Another relevant science objective of SKA is related to the cosmic magnetism, which is ubiquitous in the
Universe, since interstellar gas, planets, stars and galaxies all exhibit magnetic fields. However, the shape and
strength of such magnetic field in galaxies or even its origin is not known. The Universe itself can be magnetic.
Therefore, radio observations can measure the Faraday rotation, the polarised synchrotron emission and the
Zeeman e↵ect, which gives a detailed information on such fields, in particular whether they are primordial15,16

or are generated later on via a dynamo mechanism. Another relevant issue is the impact of magnetic fields on
the evolution of the Universe.

Bertolami, Gomes (2018)

8

FIG. 1: The allowed parameter region in the �-cH plane obtained from the gravitational growth index in the shift-symmetric
quadratic DHOST cosmology after GW170817. The parameters are given by (p, q) = (1, 1/2) (red), (1, 3) (green), and (3, 1/2)
(blue). The first set of the parameters corresponds to the solution discussed in [40, 41].

where

⌃ =
1

3

�
5� 6w(0) + 2cM

�⇢
3
�
1 + w

(0)
�
+ 2 (cM � cT) +

h
1� 2

�
cM � 3w(0)

�ih
cB � cH � �

�
cM � 3w(0) + 1

�i�
. (62)

The first two terms in Eq. (61) are the generalization of the previous results derived in the case of the Horndeski
theory [48] and the third term appears when at least either of cH and � is nonvanishing, namely when one considers
theories beyond Horndeski. Equation (61) is general in the sense that we have not yet imposed ↵T = 0. Now, imposing
↵T = 0 () cT = 0), as discussed around Eq. (56), � can be written in terms of (p, q, cH,�) as

� =
3

2(�3 + 6p+ 10q)(3p+ 11q)

⇢h
(p+ 4q) (�3 + 6p+ 10q)� 8pq2

i

+
1

2

h
(�3 + 6p+ 10q) + 8q (3p+ 2q)

i
cH +

3q(1 + 2q)(�3 + 6p+ 16q)(cH + �)2

2pq + 3qcH + (3p+ 5q)�

�
. (63)

B. Observational constraints

In this section, we investigate constraints on DHOST theories based on current observational limits on the gravita-
tional growth index �. For instance, clustering measurements from the BOSS DR12 give the limit as � = 0.52± 0.10
in Ref. [49] (based on the analysis in Fourier space) and � = 0.609 ± 0.079 in Ref. [50] (based on the analysis in
configuration space). The constraints from BOSS DR14 are given as � = 0.55±0.19 in Ref. [51] and � = 0.580±0.082
in Ref. [52] (by adding tomographic analysis). Since the typical value of the deviation from the central value of �
in the current observations as shown above can be roughly estimated as . O(0.1), let us employ � = 6/11 ± 0.1 as
a conservative constraint. For a given set of the model parameters (p, q), this can be translated into constraints on
(�, cH) using Eq. (63). The parameter regions in the �-cH plane allowed by the constraint � = 6/11± 0.1 are plotted
in Fig. 1 for (p, q) = (1, 1/2) (red), (1, 3/2) (green), and (3, 1/2) (blue). One finds from Fig. 1 that a constant-� curve
for fixed p and q is a hyperbola in the �-cH plane for (p, q) and � that we are considering. This means that we have
degeneracy between cH and � in the observations of the growth index. In contrast, in the GLPV theory we have
� = 0, and hence we can obtain for instance the following constraints on cH: �0.4  cH  0.4 for (p, q) = (1 , 1/2),
�0.4  cH  0.5 for (1 , 3/2), and �1.1  cH  0.7 for (3 ,1/2). Deriving the constraints for other values of (p, q) is
straightforward. It should be emphasized that the constraints we have obtained in Fig. 1 are those at high redshifts
satisfying ⌦m ' 1.

To compare our results with previously known constraints, it is necessary to make further assumptions that connect
the series expansion of ↵H and �1 to their present values. Specifically, we assume that ↵H = cH (1� ⌦m), �1 =

BOSS DR14 (2018)
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equations of motion to suppress the scalar field gradient sourced by massive objects. Indeed,
expanding the metric sourced by an object of mass M to Newtonian order as

ds2 = (�1 + 2�) dt2 + (1 + 2 ) �ij dx
i dxj , (1.1)

one finds a correction to the Newtonian potential

d�

dr
=

GNM

r


1 + 2↵2

✓
r

rv

◆
n
�
, (1.2)

where the dimensionless constant ↵ parameterises the coupling of the scalar to matter and
n > 0 is model dependent. A solar mass object has rv ⇠ O(0.1 kpc) [20] and so the cor-
rection to GR is strongly suppressed in the solar system. In the case of Horndeski theories,
Vainshtein screening is fully e↵ective [21–23]. For beyond Horndeski theories, this mechanism
works outside extended bodies but breaks down inside matter [24]. The equations governing
Newtonian perturbations were found to be of the form [24–27]

d�

dr
=

GNM(r)

r2
+
⌥1GN

4

d2M(r)

dr2
(1.3)

d 

dr
=

GNM(r)

r2
�

5⌥2GN

4r

dM(r)

dr
, (1.4)

where M(r) ⌘ 4⇡
R
r

0
s
2
⇢(s)ds, and the parameters ⌥1 and ⌥2 are non vanishing when the

theory contains beyond Horndeski terms in its Lagrangian.
This opens up the possibility of testing beyond Horndeski theories using astrophysical

objects such as stars [25, 26, 28–30] and galaxy clusters [27]. Currently, ⌥1 is bounded in
the range �0.22 < ⌥1 < 0.027 where the lower bound comes from the Chandrasekhar mass
of white dwarf stars [30] and the upper bound comes from consistency of the minimum mass
for hydrogen burning with the lowest mass hydrogen burning star [28, 29]. For later purposes
we note that prior to the white dwarf constraint, Ref. [26] was able to place the lower limit
⌥1 > �2/3 by requiring a sensible stellar profile (with a mass density that decreases with the
radius). The best constraint on ⌥2 = �0.22+1.22

�1.19
comes from the agreement of the lensing

and hydrostatic mass of galaxy clusters [27].
Constraining these parameters is important because they are directly related to the

coe�cients introduced in the context of the e↵ective description of dark energy that includes
Horndeski and beyond Horndeski theories [31–33], via [26, 27]:

⌥1 =
4↵2

H

c
2

T
(1 + ↵B)� ↵H � 1

and ⌥2 =
4↵H(↵H � ↵B)

5(c2
T
(1 + ↵B)� ↵H � 1)

. (1.5)

The coe�cients ↵T ⌘ c
2

T
� 1, ↵B and ↵H are defined at the level of the cosmological back-

ground solution and characterise the behaviour of cosmological perturbations [33]. In partic-
ular, when the theory is purely Horndeski ↵H = 0 and we thus have ⌥1 = ⌥2 = 0. Therefore,
constraints on ⌥i directly restrict the allowed “beyond Horndeski” deviations from GR.

The constraints mentioned above all rely on non-relativistic systems. The purpose of
this paper is to investigate the existence and structure of relativistic stars in these theories.
There are several motivations for such a study. First, the equations of motion for beyond
Horndeski theories are very non-linear and it is important to verify that static spherically
symmetric solutions for relativistic stars exist. Second, there are technical issues relating to

– 2 –

Modification of gravity 
in astrophysical bodies;
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FIG. 2: Forecast 1σ and 2σ marginalized contours in (γ, ξ) plane for SKA1MID(blue), SKA2(red) and Euclid(green), marginal-
izing over the equation-of-state parameter and bias parameters. For comparison, we also plot the kinetic gravity braiding model
(purple boxes), and the large ξ model (orange triangle).

TABLE I: Summary of the 1σ constraints on the equation-of-state parameter , the gravitational growth index γ and the
second-order index ξ marginalized over the linear and nonlinear bias parameters.

survey ∆wDE ∆γ ∆ξ
SKA1MID 0.135 0.067 0.060

SKA2 0.0085 0.0087 0.0094
Euclid 0.016 0.021 0.018

In Fig. 2, we show the 1σ and 2σ confidence regions of the gravitational growth index γ and the second-order
index ξ. The results of our Fisher analysis marginalizing over the bias parameters are summarized in Table I. For
comparison, we also plot the predicted values of {γ, ξ} for the kinetic gravity braiding model [35] (n = 1, 2, 3) as
purple boxes and the large ξ model with p = 1, derived in Appendix B as orange triangle. Although the constraint
from galaxy bispectrum on the gravitational growth index γ is relatively weaker than the expected constraints by
galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.

VI. CONCLUSION

In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
the clustering property of large-scale structure, measuring the galaxy bispectrum induced by the late-time nonlinear
gravitational evolution of the density fluctuations can be used to test the gravity theory through the evolution of the
linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
in the second-order kernel, we have introduced the second-order index ξ defined in Eq. (69), as a good candidate to
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(purple boxes), and the large ξ model (orange triangle).

TABLE I: Summary of the 1σ constraints on the equation-of-state parameter , the gravitational growth index γ and the
second-order index ξ marginalized over the linear and nonlinear bias parameters.

survey ∆wDE ∆γ ∆ξ
SKA1MID 0.135 0.067 0.060

SKA2 0.0085 0.0087 0.0094
Euclid 0.016 0.021 0.018

In Fig. 2, we show the 1σ and 2σ confidence regions of the gravitational growth index γ and the second-order
index ξ. The results of our Fisher analysis marginalizing over the bias parameters are summarized in Table I. For
comparison, we also plot the predicted values of {γ, ξ} for the kinetic gravity braiding model [35] (n = 1, 2, 3) as
purple boxes and the large ξ model with p = 1, derived in Appendix B as orange triangle. Although the constraint
from galaxy bispectrum on the gravitational growth index γ is relatively weaker than the expected constraints by
galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.

VI. CONCLUSION

In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
the clustering property of large-scale structure, measuring the galaxy bispectrum induced by the late-time nonlinear
gravitational evolution of the density fluctuations can be used to test the gravity theory through the evolution of the
linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
in the second-order kernel, we have introduced the second-order index ξ defined in Eq. (69), as a good candidate to
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Dark matter

• Existence of dark matter

ü Lots of astro/cosmological observations       

(rotation curve, LSS, CMB)

©Planck

from SDSSUnknown ``weakly” interacting particles?

�
SUSY particles (WIMP LSP)�
QCD axion,  sterile neutrino, 

Axion Like Particles (string theory) …

Basically, gravitational interaction



unknown particles?

• lots of particle experiments axion - photon coupling

©Majorovits (MADMAX)

©Snowmass project (2013)

©IceCube collabo.

Sterile neutrino

è No evidence …
è Beyond standard ``WIMP”?



Basically, only gravitational interaction

BHs as DM 

• How about other candidates?

Black holes��
However, 

Success of standard big bang model

Star formation era

©ESA

Dark matter dominated era

It is completely difficult to explain the dark matter 
by standard astrophysical black holes (steller BHs) … 

How about if BH could be formed in the early Universe?
è Primordial black hole!!



Basics of PBH 

• Primordial Black Hole (PBH)
ü BHs formed in the early Universe (after inflation)

ü direct gravitational collapse of a overdense region (horizon scale)

ü mass of formed BH ~ Hubble horizon mass at the formation

Zeldovich and Novikov (1967)
Hawking (1971)
Carr and Hawking (1974), …

straints over the full relevant mass range. The code em-
ployed in our calculations is similar to the one used by
Kawasaki et al. [164] in studying the effects of decaying
particles on BBN.

The plan of the paper is as follows. Section II describes
the background equations and defines various quantities
related to PBHs. Section III reviews black hole evaporation
and the effects of quark-gluon emission. Section IV then
discusses the constraints deriving from cosmological nu-
cleosynthesis effects, while Sec. V discusses the ones
associated with the photon background. Section VI com-
bines both constraints in a single !ðMÞ diagram for the
mass range 109– 1017 g and then discusses some other
(mainly less stringent) constraints in this mass range.
Section VII summarizes the most important limits in
mass ranges associated with larger nonevaporating PBHs.
Section VIII collects all the constraints together into a
single ‘‘master’’ !ðMÞ diagram and draws some general
conclusions. It should be stressed that Secs. VI and VII
include quite a lot of review of previous work but it is
useful to bring all the results together and we have eluci-
dated earlier work where appropriate. Throughout most of
this paper we assume that the PBHs have a monochromatic
mass function, but allowing even a small range of masses
around 1015 g would have interesting observational con-
sequences, especially for the EGB limits. However, this
discussion is rather technical, so it is relegated to an
Appendix.

II. DEFINITIONS AND DESCRIPTION OF
BACKGROUND COSMOLOGY

In this section, we present some relevant definitions and
background equations. We assume that the standard
!CDM model applies, with the age of the Universe being
t0 ¼ 13:7 Gyr, the Hubble parameter being h ¼ 0:72 and
the time of photon decoupling being tdec ¼ 380 kyr
[165,166]. Throughout the paper we put c ¼ @ ¼ kB ¼
1. The Friedmann equation in the radiation era is

H2 ¼ 8"G

3
# ¼ 4"3G

45
g$T

4; (2.1)

where g$ counts the number of relativistic degrees of
freedom. This can be integrated to give
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where g$ and T are normalized to their values at the start of
the BBN epoch. Since we are only considering PBHs
which form during the radiation era (the ones generated
before inflation being diluted to negligible density), the
initial PBH mass M is related to the ‘‘standard’’ particle
horizon massMPH (which is not the actual particle horizon
mass in the inflationary case) by

M ¼ $MPH ¼ 4"
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Here $ is a numerical factor which depends on the details
of gravitational collapse. A simple analytical calculation
suggests that it is around ð1=

ffiffiffi
3

p
Þ3 % 0:2 during the radia-

tion era [4], although the first hydrodynamical calculations
gave a somewhat smaller value [5]. The favored value has
subsequently fluctuated as people have performed more
sophisticated computations but now seems to have returned
to the original one [167]. However, as mentioned earlier,
the effect of critical phenomena could in principle reduce
the value of $, possibly down to 10& 4 [168], as could a
reduction in the pressure [44– 46]. On the other hand, if the
overdensity from which the PBH forms is ‘‘noncompen-
sated’’ (i.e. not surrounded by a corresponding underden-
sity), subsequent accretion could generate an eventual PBH
mass well above the formation mass, leading to an ‘‘effec-
tive’’ value of $ much larger than 1 [6]. In view of the
uncertainties, we will not specify the value of $ in what
follows.
Throughout this paper we assume that the PBHs have a

monochromatic mass function, in the sense that they all
have the same mass M. This simplifies the analysis con-
siderably and is justified providing we only require limits
on the PBH abundance at particular values ofM. Assuming
adiabatic cosmic expansion after PBH formation, the ratio
of the PBH number density to the entropy density, nPBH=s,
is conserved. Using the relation # ¼ 3sT=4, the fraction of
the Universe’s mass in PBHs at their formation time is then
related to their number density nPBHðtÞ during the radiation
era by
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where the subscript ‘‘i’’ indicates values at the epoch of
PBH formation and we have assumed s ¼ 8:55 '
1085 Gpc& 3 today. g$i is now normalized to the value of
g$ at around 10

& 5 s since it does not increase much before
that in the standard model and that is the period in which
most PBHs are likely to form. The current density parame-
ter for PBHs which have not yet evaporated is given by
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straints over the full relevant mass range. The code em-
ployed in our calculations is similar to the one used by
Kawasaki et al. [164] in studying the effects of decaying
particles on BBN.

The plan of the paper is as follows. Section II describes
the background equations and defines various quantities
related to PBHs. Section III reviews black hole evaporation
and the effects of quark-gluon emission. Section IV then
discusses the constraints deriving from cosmological nu-
cleosynthesis effects, while Sec. V discusses the ones
associated with the photon background. Section VI com-
bines both constraints in a single !ðMÞ diagram for the
mass range 109– 1017 g and then discusses some other
(mainly less stringent) constraints in this mass range.
Section VII summarizes the most important limits in
mass ranges associated with larger nonevaporating PBHs.
Section VIII collects all the constraints together into a
single ‘‘master’’ !ðMÞ diagram and draws some general
conclusions. It should be stressed that Secs. VI and VII
include quite a lot of review of previous work but it is
useful to bring all the results together and we have eluci-
dated earlier work where appropriate. Throughout most of
this paper we assume that the PBHs have a monochromatic
mass function, but allowing even a small range of masses
around 1015 g would have interesting observational con-
sequences, especially for the EGB limits. However, this
discussion is rather technical, so it is relegated to an
Appendix.
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In this section, we present some relevant definitions and
background equations. We assume that the standard
!CDM model applies, with the age of the Universe being
t0 ¼ 13:7 Gyr, the Hubble parameter being h ¼ 0:72 and
the time of photon decoupling being tdec ¼ 380 kyr
[165,166]. Throughout the paper we put c ¼ @ ¼ kB ¼
1. The Friedmann equation in the radiation era is
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where g$ and T are normalized to their values at the start of
the BBN epoch. Since we are only considering PBHs
which form during the radiation era (the ones generated
before inflation being diluted to negligible density), the
initial PBH mass M is related to the ‘‘standard’’ particle
horizon massMPH (which is not the actual particle horizon
mass in the inflationary case) by

M ¼ $MPH ¼ 4"
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Here $ is a numerical factor which depends on the details
of gravitational collapse. A simple analytical calculation
suggests that it is around ð1=

ffiffiffi
3
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Þ3 % 0:2 during the radia-

tion era [4], although the first hydrodynamical calculations
gave a somewhat smaller value [5]. The favored value has
subsequently fluctuated as people have performed more
sophisticated computations but now seems to have returned
to the original one [167]. However, as mentioned earlier,
the effect of critical phenomena could in principle reduce
the value of $, possibly down to 10& 4 [168], as could a
reduction in the pressure [44– 46]. On the other hand, if the
overdensity from which the PBH forms is ‘‘noncompen-
sated’’ (i.e. not surrounded by a corresponding underden-
sity), subsequent accretion could generate an eventual PBH
mass well above the formation mass, leading to an ‘‘effec-
tive’’ value of $ much larger than 1 [6]. In view of the
uncertainties, we will not specify the value of $ in what
follows.
Throughout this paper we assume that the PBHs have a

monochromatic mass function, in the sense that they all
have the same mass M. This simplifies the analysis con-
siderably and is justified providing we only require limits
on the PBH abundance at particular values ofM. Assuming
adiabatic cosmic expansion after PBH formation, the ratio
of the PBH number density to the entropy density, nPBH=s,
is conserved. Using the relation # ¼ 3sT=4, the fraction of
the Universe’s mass in PBHs at their formation time is then
related to their number density nPBHðtÞ during the radiation
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where the subscript ‘‘i’’ indicates values at the epoch of
PBH formation and we have assumed s ¼ 8:55 '
1085 Gpc& 3 today. g$i is now normalized to the value of
g$ at around 10

& 5 s since it does not increase much before
that in the standard model and that is the period in which
most PBHs are likely to form. The current density parame-
ter for PBHs which have not yet evaporated is given by

"PBH ¼ MnPBHðt0Þ
#c

%
!

!ðMÞ
1:15 ' 10& 8

"!
h

0:72

"& 2
$1=2

!
g$i

106:75

"& 1=4

'
!
M

M(

"& 1=2
; (2.5)

CARR et al. PHYSICAL REVIEW D 81, 104019 (2010)

104019-4

especially for the PBH formed in the radiation-dominated era
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``Conservative” constraints

Niikura et al.; 1710.02151v3

Dark matter window !!

HSC



10 BH-BH merger events and 1 NS-NS

©LIGO/VIRGO collaboration

Existence of about 30 M_sun BH !!!



OGLE-IV (data) results 
-exoplanet search -

OGLE (Optical Gravitational Lensing Experiment) IV;

5-years monitoring observations of stars in the Galactic bulge

Udalski, Szymanski, Szymanski, 1504.05966
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Fig. 13. OGLE-IV sky coverage in the Galactic coordinates. Credit: Jan Skowron.
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Fig. 15. OGLE-IV Galactic center fields. Cadence of observations of the inner Galactic bulge microlensing fields is color-coded. On average: red fields – one
observation every 19 minutes throughout the visibility of the field (z < 62 deg), yellow fields – one observation per hour, green fields – 2–3 observations per night,
dark blue fields – one observation per night, cyan fields – one observation per two nights. Silver color marks additional fields which were regularly observed in the
years 2010–2013. Transparent fields in the outer Galactic bulge and beige fields of the Galactic disk are monitored during the OGLE Galaxy Variability Survey
(see also Fig. 21). Credit: Jan Skowron, background photograph: Krzysztof Ulaczyk.



Earth-mass PBHs???
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Figure 1 Observed distribution of timescales of 2,617 high-quality microlensing

events discovered by OGLE in 2010–2015. The purple line is the best-fitting model. The

dotted line constrains the 95% confidence limit on the number of wide-orbit or unbound

Jupiter-mass planets of 0.25 planets per star. The dashed red line is the best-fitting model

from ref. 11 predicting almost two Jupiter-mass free-floating planets per star. According

to that model we should find 64 events with 0.3 < tE < 1.8 d, but only 21 were observed

(the discrepancy is even larger for events with 0.3 < tE < 1.3 d, where 6 events were

found out of 42 expected). We detected six possible ultrashort-timescale events (tE < 0.5

d), which may be due to Earth-mass free-floating planets (grey histogram). Solid (dotted)

green lines mark the expected microlensing signal assuming 5M� planets five (ten) times

more frequent than stars. Error bars are the 1� Poisson uncertainties on the counts of the

10

Mroz et al. arXiv:1707.07634
6 microlensing events with short-time scale

è detection of earth mass PBHs?



Earth mass BHs, LIGO BHs and DM

PTA

Possible detection
by LIGO/VIRGO ?
(or upper limit)

Dark matter window !!

Detected by OGLE?

Sasaki, Suyama, Tanaka, SY (2016),
Niikura, Takada, SY, Sumi, Masaki (2019)



Can we probe PBH-DM by SKA?

• SKA as a probe of high redshift Universe

Ø Tashiro and Sugiyama (2012), and more.. (e.g., Poulin et al. (2017), …)

X-ray photons emitted by accretion of matter onto PBHs 
The effect of primordial black holes on 21cm fluctuations 3
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Figure 1. The neutral fraction of hydrogen as a function of comoving distance from the source. The left panel shows the dependence
on mass at z = 30. The lines represents the neutral fraction with masses ranging from 10 M⊙ to 107 M⊙ from left to right. The right
panel shows the dependence on the redshift for a PBH with M = 103 M⊙. The dotted-dashed, dotted, solid and dashed lines represent
the neutral fraction at z = 50, z = 40, z = 30 and z = 20, respectively.

The neutral fraction of hydrogen is obtained by solving the equation of the ionization-recombination equilibrium

αHn2
H(1− xH)2 = Γ(r) nHxH , (6)

where αH is the recombination cross-section; αH = 2.6× 10−13cm3s−1,

Solving Eq. (6), we show the neutral fraction of hydrogen for different masses and for different redshifts in the left and
right panels of Fig. 1, respectively. Here we assume that the density around a PBH is the same as the mean density of the

Universe. The comoving radius of the ionization sphere is made large by a massive PBH. Increasing the mass of the PBH means

increasing the number of the ionization photons, because we assume that the flux of the ionization photons is proportional to
a tenth of the Eddington luminosity. As the Universe evolves, the comoving radius of the ionization sphere increases slowly.

Next, we evaluate the kinetic temperature of the IGM around a PBH. The heating rate per unit volume per unit time at

a distance r from the source is obtained by considering the photons absorbed by the IGM at r,

H(r) = fnHxH(r)

∫

∞

E0

σ(E)N (E; r)dE, (7)

where f is the fraction of the photon energy absorbed through the collisional excitations of the IGM. Shull & van Steenberg

(1985) provided a simple fitting formula f = C
[

1− (1− xa)b
]

, where C = 0.9771, a = 0.2663, b = 1.3163 and x is the ionized

fraction x = 1− xH .

The kinetic temperature of the IGM at a distance r, Tk(r), is determined by the balance between the heating and the
Compton cooling due to CMB photons,

H(r) =
8σT

3me
T 4
γ (1− xH)(Tk(r)− Tγ) + 2HTk(r), (8)

where σT is the cross section for the Compton scattering and Tγ is CMB temperature. Here we also take into account the

cooling by the expansion of the Universe.

Fig. 2 shows the IGM kinetic temperature profiles for different masses in the left panel and for different redshifts in the
right panel. Here we add the background kinetic temperature to the kinetic temperature in order to match both temperatures

at a large distance from a PBH. Near the source, the temperature is determined by the heating rate and the Compton

cooling rate. With increasing the distance from the source, the neutral fraction grows and the optical depth τ becomes larger.
Accordingly, the number density of photons damps as shown in Eq. (2). As a result, the temperature starts to decrease rapidly.

Because the Compton cooling depends on the number of free electrons, this cooling becomes ineffective at a distance where
the neutral fraction of hydrogen becomes almost unity. For example, this scale corresponds to 0.1 comoving Mpc for a PBH

with M = 103 M⊙ at z = 30. Beyond this point, the temperature mildly decreases due to the cooling of the cosmic expansion.

The kinetic temperature at the inner side is independent on a PBH mass. However the region of the high temperature becomes
larger as the PBH mass increases. In the right panel of Fig. 2, the redshift dependence of the kinetic temperature is shown.

The larger the neutral hydrogen density is, the larger the heating efficiency becomes as in Eq. (7). Therefore the temperature

becomes high as the redshift increases.

In this section, we obtained the neutral fraction of hydrogen by solving the equation of the ionization-recombination
equilibrium, Eq. (6). However the recombination time scale is much smaller than the ionization time scale at the redshifts we

are interested in. Therefore Eq. (6) might be incorrect. In this limit, we can neglect the recombination effect. Without the

c⃝ 0000 RAS, MNRAS 000, 000–000

change the optical depth



Can we probe PBH-DM by SKA?

• SKA as a probe of high redshift Universe

Ø Gong and Kitajima (2017)

Poisson like isocurvature fluctuations of PBHs
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Figure 1: Linear matter power spectrum as the sum of the adiabatic contribution and Poisson
fluctuation from PBHs at redshift z = 20. We have set MPBH = M� (100M�) in the left (right)
panel and fPBH = 10�1, 10�2, 10�3, 10�4, 10�5 from top to bottom in each panel. The red
dotted lines represent conventional prediction without PBHs.

M = 4⇡⌦m⇢crR
3
/3 within the comoving radius R and find

R

h�1Mpc
= 0.95⇥ 10�4 ⌦�1/3

m0

✓
M

h�1M�

◆1/3

. (12)

The halo mass function denoted by dn/dM is defined by the number of halos which have masses
in a range between M and M + dM , and conventionally it is expressed as

dn

dM
=

⇢m

M

d log ��1

dM
f(�) , (13)

where f(�) is a fitting function and we use the formula derived in [54].
PBHs contribute additional power (11) for the formation of dark matter haloes through the

variance (5). Being constant on all scales, (11) is dominant on small scales or, equivalently, for
haloes with small masses. Figure 2 shows �(M) numerically computed by adding (11) to P (k)
in (5). Dashed lines are the standard adiabatic results, while solid lines exhibit an enhancement
due to the Poisson fluctuations. Because �(M) from PBHs exceeds the critical density, even
though PBHs account for only a small fraction of total dark matter, their Poisson fluctuations
can seed small-scale structure at high redshift. We use this �(M) for the computation of the
halo mass function accordingly. In addition, we postulate an upper bound on the halo mass
function in the case where the Poisson fluctuation dominates the adiabatic one. This is based
on the fact that the halo formation in that case occurs around at least a single PBH and thus
the number of haloes cannot exceed that of PBHs. One can estimate the comoving number
density of PBHs nPBH as

nPBH =
⇢PBH

MPBH

=
fPBH⌦c0⇢cr0

MPBH

⇠ 105Mpc�3

✓
fPBH

10�4

◆✓
30M�

MPBH

◆
. (14)

Hence, we conservatively impose the maximum value of the halo mass function given by (14)
if the Poisson fluctuation is the dominant source of the halo formation. We set the low-mass

5

Matter power spectrum



Can we probe PBH-DM by SKA?

• SKA as a probe of high redshift Universe

From EDGES result …

Hektor et al. (2018)

depending on 

the astrophysical parameters 

(accretion rate, …)..



Can we probe PBH-DM by SKA?

• SKA as a PTA

Pulsar Timing Array is known 
to be an GW detection experiment.

SKA can find lots of radio Pulsars!

Barak, et al. (2018)



Can we probe PBH-DM by SKA?
See, e.g. Saito and J. Yokoyama (2009)

Density fluctuations with large amplitude è collapse è PBH formation

Based on the cosmological perturbation up to the second order, 

Density fluctuations would be source of the tensor modes, that is, gravitational waves!!

frequency (wave number) of induced GWs � horizon scale at the reenter

mass of PBH � horizon mass at the reenter



Can we probe PBH-DM by SKA?

• SKA as a PTA
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FIG. 2. µ-dist. ⇣ ! R. k is artificially normalized by assuming an appropriate cosmic evolution after

phase-4.

the invariant norm of the potential tilt, and min(rIrJV ) is the minimum eigenvalue of the

Hessian rIrJV in an orthonormal frame.

In terms of inflation, this conjecture claims that any single continuous inflationary phase

cannot last so long. That is, if it is true, one needs multiple phases of inflation to explain

su�cient e-folds ⇠ 50–60 for our observable universe in total, as we are proposing. In fact

our model always satisfies the second condition during any inflation phase as

�min(rIrJV )

V
' i > 1, for all phase-i, (16)

while the first condition is satisfied apart from the inflationary trajectory. The existence

of large negative eigenvalue in the Hessian matrix generally causes a negligibly short (less

than 1 e-fold) inflationary phase unless the initial value of the first slow-roll parameter

✏H is significantly small (see Eq. (11)) and then the corresponding amplitude of the power

spectrum is large. In other words, the PBH formation on the onset scale is relatively natural

for a non-negligibly continuing phase in terms of the above conjecture.

10

Primordial scalar power

Tada, SY in prep.
induced GWB

SKA bound



byproduct

• SKA as a PTA

Primordial magnetic field x primordial magnetic field è primoprrdial GWs

Saga, Tashiro, SY (2018)
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FIG. 3: Upper bounds on the amplitude of PMFs obtained from direct detection measurements of GWB; current PTAs (black
shaded), SKA PTA (gray shaded), LISA (green shaded), and LIGO (cyan shaded). We also show the previous studies: magnetic
reheating (red) [37], BBN (blue) [36] and CMB distortion (magenta) [34]. Upper bounds from the direct detection measurements
of GWB are shown by the shaded regions which come from the generation epoch of PMFs within 10−17 ≤ ηB/ην ≤ 10−12.

where we introduce the Heaviside step function ΘH(x) which means that the amplitude of PMFs is identical to zero
at smaller scales than the cutoff scale kc. Here Bλ is the amplitude of PMFs by smoothing over comoving scale of λ
and kλ ≡ 2π/λ. For such blue-tilted PMFs, the spectrum of the energy density of GWB is given as
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(
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(
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. (19)

If we assume k/k1 ≪ 1 and 2nB + 3 > 0, we can perform the integrations in terms of k2 and k1 and obtain an
approximate expression as

ΩGW(k, η0) ≈
R2

γ

64π2

(2π)2nB+6

[

Γ
(

nB+3
2

)]2

1
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(
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)2nB+3( B2
λ

ργ,0

)2(
k

H0

)2( k

kλ

)3

h2
T(k, η0) (for k < kc) , (20)

From the above approximate expression, one can find that the scale dependence of ΩGW is independent of the spectral
index of PMFs nB, i.e., proportional to k2h2

T(k, η0), while the amplitude of ΩGW depends on it [24, 43]. As an example,
let us assume the PMFs generated at the electroweak phase transition where ηB is taken to be equal to ηEW ∼ 10−6ην
and the spectral index of PMFs is expected to be nB = 2 [49]. For such a case, the cutoff scale is assigned to the
horizon-scale of the electro-weak transition, i.e. kc = η−1

EW. Therefore, since the observed frequency band of LIGO is
much larger than the cut-off scale in the spectrum of PMFs, kc, the PTA observations can put a strong constraint on
the amplitude of PMFs.
The current PTA observations put the constraint on the amplitude of PMFs as B1Mpc ! 1.9 × 10−18 nG. This

constraint is comparable to that obtained from the nucleosynthesis bound on GWB [43]. The future PTA observation
by SKA is expected to constrain the amplitude of PMFs about B1Mpc ! 1.0× 10−19 nG. The expected constraint by
the future LISA experiments has been investigated in [43, 51]. In the above analysis, we focus on PMFs generated
in the cosmological phase transition. However, Ref. [52] discusses the upper bound of GWB due to turbulence in
the chiral plasma sourced by PMFs. Even in this specific model, GWB induced from PMFs can be also strongly
constrained by the PTA. In particular, the future PTA observation such as SKA should be a good probe to explore
various models of the PMF generation.
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Figure 4. Expected constraints on the primordial power spectrum from observations of 21 cm signals
from minihalos in combination with the CMB. Contours depict 1� errors with other cosmological
parameters being marginalized. We assume 21 cm signals from minihalos can be measured down to
zmin = 6.

10�3�ns 10�3�↵s 10�3��s

Planck 7.7 10.7 15.1
COrE 3.2 2.9 6.5
SKA 4.6 2.9 1.5
FFTT 2.4 1.6 0.79
Planck+SKA 1.7 2.0 0.63
Planck+FFTT 1.3 1.3 0.44
COrE+SKA 1.2 1.6 0.39
COrE+FFTT 0.95 1.1 0.28

Table 3. Constraints on parameters for the primordial power spectrum. For 21 cm observations,
zmin = 6 is assumed.

On the other hand, as can be read o↵ by Eq. (3.2), the signal-to-noise ratio in obser-
vations of the 21cm signal from minihalos rapidly increases at low redshifts. Therefore, the
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Constraining primordial non-Gaussianity via a multitracer technique with surveys by
Euclid and Square Kilometre Array

Daisuke Yamauchi,1, ∗ Keitaro Takahashi,2 and Masamune Oguri1, 3, 4
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We forecast future constraints on local-type primordial non-Gaussianity parameter fNL with a
photometric galaxy survey by Euclid, a continuum galaxy survey by Square Kilometre Array (SKA),
and their combination. We derive a general expression for the covariance matrix of the power
spectrum estimates of multiple tracers to show how the so-called multitracer technique improves
constraints on fNL. In particular we clarify the role of the overlap fraction of multiple tracers and
the division method of the tracers. Our Fisher matrix analysis indicates that stringent constraints
of σ(fNL) ! 1 can be obtained even with a single survey, assuming five mass bins. When Euclid
and SKA phase 1 (2) are combined, constraints on fNL are improved to σ(fNL) = 0.61 (0.50).

PACS numbers:

I. INTRODUCTION

Primordial non-Gaussianity of density fluctuations is
key to understanding the physics of the early Universe.
Among several types of primordial non-Gaussianity, the
local-type one, fNL, has been studied widely, partly be-
cause even the simplest inflationary models predict small
but nonvanishing values of fNL ofO(0.01). Here we quan-
tify non-Gaussianity of the local form as

Φ = φ+ fNL(φ−
〈

φ2
〉

) , (1)

where Φ and φ denote the Bardeen potential and an aux-
iliary random-Gaussian field.
Primordial non-Gaussianity has primarily been con-

strained from the bispectrum in cosmic microwave back-
ground (CMB) temperature fluctuations. Recently,
Planck [1] obtained a tight constraint of fNL = 2.7± 5.8
at 1σ statistical significance. A complementary way to
access non-Gaussianity is to measure its impact on large
scale structure. Luminous sources such as galaxies must
be most obvious tracers of the underlying dark matter
distributions with a bias. Primordial non-Gaussianity in-
duces the scale-dependent bias [2, 3] such that the effect
dominates at very large scales. Hence, based on a reason-
able assumption that the galaxy bias is linear and deter-
ministic on large scales, it has been shown that the galaxy
survey can effectively constrain fNL to the level compara-
ble to CMB temperature anisotropies [4, 5]. While clus-
tering analyses at large scales are limited due to cosmic
variance, Seljak [6] proposed a novel method to reduce
the cosmic variance using multiple tracers with different
biases, the so-called multitracer technique. This method

∗Email: yamauchi”at”resceu.s.u-tokyo.ac.jp

allows us to measure the scale-dependent bias accurately
even at large scales, leading to strong constraints on fNL.

Future wide and deep surveys with Euclid1 in op-
tical and infrared bands and Square Kilometre Array
(SKA) 2 in radio wavelengths will provide an unprece-
dented number of galaxies to measure the power spectra.
The radio continuum survey conducted with SKA cov-
ers 30, 000 deg2 out to high redshifts, though the redshift
information is not available. The authors in [7] found
that even without the redshift information the multi-
tracer technique improves constraints as σ(fNL) = O(1),
while weaker constraints of σ(fNL) = O(10) without
the multitracer technique. While the number of galax-
ies and covered area are smaller for the Euclid photo-
metric survey (15, 000 deg2), it provides redshift infor-
mation via photometric redshifts. Redshift information
is expected to be highly advantageous for constraining
fNL because the bias evolves strongly with redshift. As
we show below, each of these two surveys provides con-
straints of σ(fNL) = O(1) and constraints improve to
σ(fNL) = O(0.1) with their combination. To calculate
expected constraints, in this paper, we employ the Fisher
matrix formalism including the redshift binning as well
as the mass binning, taking the overlap of the two survey
regions into account.

1 See http://www.euclid-ec.org
2 See http://www.skatelescope.org

Lensing of 21-cm Fluctuations by Primordial Gravitational Waves
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2
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Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark
ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial
gravitational waves induces a curl component, while the contribution from lensing by density fluc-
tuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small
angular scales, and measurements at di↵erent frequencies probe di↵erent shells in redshift space.
There is thus a huge trove of information with which to reconstruct the curl component of the lens-
ing field, allowing tensor-to-scalar ratios conceivably as small as r ⇠ 10�9—far smaller than those
currently accessible—to be probed.

PACS numbers: 98.80.-k

One of the principle aims of early-Universe cosmol-
ogy is detection of the inflationary gravitational-wave
(IGW) background [1] via measurement of the curl pat-
tern [2] that it induces in the cosmic microwave back-
ground (CMB) polarization. Likewise, a principle aim of
physical cosmology is measurement of the distribution of
atomic hydrogen during the “dark ages,” the epoch af-
ter recombination and before the formation of the first
stars and galaxies, via detection of hydrogen’s 21-cm line
[3–5]. Several experiments are poised to soon detect the
21-cm signal from the epoch of reionization [6], and there
are longer-term prospects to delve into the dark ages [7].
In this paper, we show that angular fluctuations of the
21-cm intensity may ultimately provide an IGW probe
that extends to amplitudes smaller than those currently
accessible with the CMB.

Weak gravitational lensing of galaxies by large-scale
density perturbations [8] was detected in 2000 [9] and is
now a chief aim of a number of ongoing and future galaxy
surveys. These e↵orts seek the lensing-induced distor-
tions of galaxy shapes. Weak lensing of the CMB by
density perturbations was detected recently [11]. The ob-
servational signatures here are lensing-induced position-
dependent departures from statistical isotropy in the two-
point CMB correlation functions, or equivalently, the
four-point correlation functions induced by lensing [10].

Primordial gravitational waves can likewise lens both
galaxies and the CMB [12–14]. The most general lensing
pattern can, like the CMB polarization, be decomposed
into curl and curl-free parts [15]. Since density pertur-
bations produce (to linear order in the deflection angle)
no curl in the lensing pattern, the curl component pro-
vides an IGW probe. The problem, however, is that the
curl signal, even with the most optimistic assumptions
about IGWs, is well below the noise for both current
galaxy surveys and even for optimistic next-generation
CMB experiments.

Here we consider lensing of intensity fluctuations in
the 21-cm signal from atomic hydrogen in the dark ages.

Atomic hydrogen in the redshift range 30 . z . 200
can absorb radiation deep in the Rayleigh-Jeans region
of the CMB [3]. Measurement of this absorption, over
some narrow frequency range (corresponding to a nar-
row redshift range), over the sky thus maps the spatial
distribution of hydrogen at that redshift. The angular
power spectrum of these 21-cm fluctuations extends to
multipole moments l ⇠ 107 (limited only by the bary-
onic Jeans mass) [3], far larger than those, l ⇠ 3000, to
which the CMB power spectrum extends (beyond which
fluctuations are suppressed by Silk damping). The sig-
natures of gravitational lensing of these 21-cm angular
correlations are precisely the same as those of lensing of
the CMB temperature map—local departures from sta-
tistical isotropy. We can therefore adopt unchanged the
mathematical formalism for lensing of the CMB.

Our work resembles in spirit that in Ref. [16] which ar-
gued that the huge number of Fourier modes available in
21-cm maps of the dark-age hydrogen distribution would
provide considerable statistical significance in detecting
the IGW distortion to matter fluctuations. However,
they consider the intrinsic distortion to matter fluctu-
ations by IGWs. On the other hand, we consider the
distortion to the images of the matter distribution by
lensing by IGWs. Our work is related to that of Ref. [17],
who considered reconstruction of the lensing field due to
density perturbations with 21-cm fluctuations.

The most general deflection field ~� can be written as
a function of position n̂ on the sky as [15],

~� = ~r~✓ �(n̂) +
~r~✓ ⇥ ⌦(n̂), (1)

in terms of curl-free (~r~✓�) and curl (~r~✓⇥~⌦) components.
The angular power spectrum for the curl field ⌦(n̂) due
to lensing of sources at redshift z by IGWs with power
spectrum PT (k) is

C⌦
L = 2

Z
d3k

(2⇡)3
PT (k)

⇥
FX
L (k)

⇤2
, (2)
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And more; 
Ø 21cm global signal (small scale structure è gas temp. evo., …) Yoshiura, Takahashi^2 (2018)
Ø 21cm lensing (detecting PGWs) Book, Kamionkowski, Schmidt (2011) 



And more; 
Ø DE constraints from early Universe  Kohri et al. (2016)
Ø growth index, or MG in astrophysical bodies,  in early Universe? 

What is DE?

• Points for observations

üCosmological constant

üQuintessence models – thawing type

-- freezing type

ü Scalar-tensor theories – Horndeski, DHOST theories,…

SKA



Can we probe DM by SKA?

• PBH-DM

SKA bound

And more; 
Ø small scale DM clumps with PTA  Oguri, Kashiyama (2018)
Ø any other idea? microlensing, radio sources, …

21cm from early Universe 
(evo. of gas temperature, ionization history, ..) 

Induced Primordial Gravitational Waves



Can we probe other DM by SKA?

• Baryon – DM interaction

• Warm DM

• Axion DM (Ultra light particles, ..)

Fialkov, Barkana, Cohen (2018), 

Cheung et al. (2018), 

Kovetz et al. (2018), … FIG. 1: Evolution of T21 with three di↵erent minimum halo masses. The black line is the EDGES

best-fit model.

zh = (19.5, 19.0, 18.6), and � = (1.54, 1.52, 1.48), respectively. These three configurations

can be treated as the representative systematic uncertainties. In Fig. 1, we show their

impacts on the plane (z, T21) for m� = 200GeV and h�vi = 3 ⇥ 10�25cm3
s
�1 with the

assumption of DM 100% annihilation to electron-positron pairs. The black line is the EDGES

best-fit model (EDGES BF). Clearly, the red solid line with the resolution of the minimum

halo mass Mmin = 10�3
M� gives the weakest and the most conservative limit than the other

two. Hereafter, we will present our result only based on mass resolution Mmin = 10�3
M� as

being conservative.

In this paragraph, we would like to explicitly demonstrate how we compute the theo-

retical prediction of the DM modified T21 signal. First of all, after all the DM ingredients

are included, we insert Eqs. (3) and (4) into the RECFAST code [32] to obtain the DM-

modified matter temperature Tg(z). Secondly, we perform the RECFAST computation again

by switching o↵ the DM contribution in order to calculate matter temperature without DM

annihilation. Then, comparing the matter temperature from both scenarios, one can obtain

the change of Tg by DM annihilation �Tg. This quantity is useful in the next step. Before

performing the third step, let us make a reasonable assumption that Ts is fully coupled to

Tg at z = 15� 20 as indicated by the T21 signal probed by EDGES. Therefore, in the third

6

SKA as a probe of small scale structure 

evolution of gas temperature

Shimabukuro, Inoue, Ichiki, SY (2014),

Sekiguchi, Tashiro (2014), 
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other interpretations are possible and these observations
cannot yet be taken as definitive evidence of WDM or
measurement of its mass.

IV. DISCUSSION AND SUMMARY

We now turn to a discussion of the observability of the
21 cm forest due to minihalos. The principal question
is the existence of background radio sources with suffi-
cient brightness and number at the relevant frequency
and redshifts of z ∼ 10 − 20. The low temperatures
of minihalos imply that the width of the expected ab-
sorption features are narrow, necessitating spectroscopy
with frequency resolution of order ∆ν ∼ kHz at observer
frequencies νobs ∼ 70-130 MHz. Following and updat-
ing [16], in order to detect absorption features of optical
depth τ with frequency resolution ∆ν and signal-to-noise
S/N with an integration time tint, the required minimum
background source brightness is
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(22)

where the specifications anticipated for SKA2-low are
adopted for the effective collecting area Aeff and system
temperature Tsys [50, 51].
Our results in Section III at face value show that spec-

troscopy of a single source with such properties at z ∼ 10
may reveal tens to hundreds of absorption features with
τ ∼ 0.01 − 0.1, which could already provide important
information on the SSPS. Multiple sources would still be
desirable to characterize fluctuations along different lines
of sight. On the other hand, at z ∼ 10, our neglect of
astrophysical effects such as the UV background or reion-
ization and heating of the IGM is hardly justifiable. As
mentioned below, in reality, such effects may completely
dominate over any of the SSPS-related effects discussed
above, which were quite small already at z = 10 except
for the case of WDM.
In this regard, z ∼ 20 or higher would be much more

preferable, since the formation of stars and galaxies and
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where the specifications anticipated for SKA2-low are
adopted for the effective collecting area Aeff and system
temperature Tsys [50, 51].
Our results in Section III at face value show that spec-

troscopy of a single source with such properties at z ∼ 10
may reveal tens to hundreds of absorption features with
τ ∼ 0.01 − 0.1, which could already provide important
information on the SSPS. Multiple sources would still be
desirable to characterize fluctuations along different lines
of sight. On the other hand, at z ∼ 10, our neglect of
astrophysical effects such as the UV background or reion-
ization and heating of the IGM is hardly justifiable. As
mentioned below, in reality, such effects may completely
dominate over any of the SSPS-related effects discussed
above, which were quite small already at z = 10 except
for the case of WDM.
In this regard, z ∼ 20 or higher would be much more

preferable, since the formation of stars and galaxies and

Axion-photon conversion search

Modulation of grav. potential

where V is the volume observed. Important assumptions must be made about the astrophysical

environment in order to apply these equations. The magnetic field must be inhomogeneous on

scales that can be seen by the axion, and the plasma density must be less than that required

for resonance conversion. While there are great uncertainties in the small scale structure of the

Galaxy, the average electron density of order 1cm
�3

and the extremely high plasma density

required for resonance conversion of a non-relativistic axion, leads us to believe that there is

merit in investigating the use of radio telescopes further.

3 Observing axion conversion in the interstellar medium

with the SKA

Figure 2: The sensitivity of SKA-mid shows

considerable improvement on the pre-cursor

telescopes, the Australian SKA Pathfinder

(ASKAP) and the Karoo Array Telescope

(MeerKAT). In this Figure we show the cou-

pling strength that could be probed by ob-

serving the interstellar medium across the fre-

quency range accessible to ASKAP, MeerKAT

and SKA-mid. The system temperature of

the SKA is minimised between ⇠ 2 � 7GHz,

corresponding to an axion mass of ⇠ 8.26 �
28.91µeVc

�2
and providing a good opportunity

for detection of both the KSVZ and DFSZ ax-

ion. Figure taken from [11].

In order to determine the energy produced in

a given region in the Milky Way, we must

make an assumption about both the den-

sity of dark matter at a given point and the

strength and profile of the magnetic field.

We use Equation 1 to determine the photon

production rate at the Galactic centre and

throughout the interstellar medium, making

the assumption that the related magnetic

field does not change on timescales visible to

the axion.

We calculate the density of dark matter

using an adjusted NFW profile with a central

core density of 10GeVcm
�3

and a density at

Earth of 0.4GeVcm
�3

. The strength of the

magnetic field is assumed to have a strength

of 50µG within a radius of 1kpc of the Galac-

tic centre and a profile that reduces radially

along the Galactic disk as r(kpc)�1
. Within

each region we then assume that the profile of

the magnetic field is turbulent on small scales

and can be described by a Kolmogorov spec-

trum.

To calculate the flux at Earth that re-

sults from photons being produced via axion

conversion across the interstellar medium, we

assume that the energy propagates in all di-

rections and is shared across the surface of a

sphere, with radius given by the distance be-

tween the region of conversion and the Earth.

We also assume that the dark halo of the

Milky Way displays no net rotation, and that

the Galactic disk is moving through this halo with a rotational velocity at Earth of 220kms
�1

.

Using these assumptions for an axion of mass 2.05µeV the flux at Earth is calculated to be

3.7µJy. The axion signature will be observed as a spectral line with a central frequency of

Patras 2017 3

Kelley, Quinn (2017)
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Figure 1. Pulsar timing signal from the scalar field dark matter (3.9) for a range of scalar

field masses m. Shaded wedges represent the estimated sensitivity of various pulsar timing

array observations (adopted from [7]). For masses below 10�23 eV the scalar field behaves

like hot dark matter, and is incompatible with the observed power spectrum of density

perturbations [3, 13].

Therefore, the scalar field dark matter has the same e↵ect on the pulsar timing

measurements as gravitational wave background with characteristic strain

hc = 2
p
3 c = 2 · 10�15

✓
⇢DM

0.3GeV/cm3

◆✓
10�23 eV

m

◆2

, (3.9)

at frequency

f ⌘ 2⇡! = 5 · 10�9 Hz
⇣ m

10�23 eV

⌘
. (3.10)

The amplitude of the signal from the scalar field dark matter for a range of masses

m is shown in Fig. 1 together with the sensitivity curves of the pulsar timing array

experiments. The sensitivities are taken from [7] where three cases are considered.

The current limit from the Parkes PTA [9] corresponds to hc ⇡ 2 · 10�14 at the

frequency f = 8 · 10�9 Hz. The sensitivity achievable by PPTA by monitoring

20 pulsars for 5 years with the timing precision �trms = 100 ns is estimated as

hc ⇡ 2 · 10�15 at the frequency f = 7 · 10�9 Hz. Finally, assuming that SKA will

be able to monitor 100 pulsars for 10 years with the timing precision 50 ns, the

sensitivity of hc ⇡ 10�16 at the frequency f = 3 · 10�9 Hz can be achieved. We see

from Fig. 1 that the scalar field dark matter signal can be observed with SKA pulsar

timing array for the dark matter mass m . 2.3 · 10�23 eV.

– 7 –

Khmelnitsky, Rubakov (2014)


