How submillimeter facilities such as ALMA reveals early metal enrichment in the epoch of reionization Credit: NAO.

SKA ワークショップ「銀河進化と遠方宇宙」 神奈川大学, 11-13 March 2019

Outline

ALMA

- Exploring the `dirty' universe
- Well into the EoR
- Poor spatial dynamic range
- Poor instantaneous redshift coverage

www.almaobservatory.org

www.skatelescope.org

Outline

Introduction

• Submillimeter observations reveal "dirty" (!?) universe in the EoR

Case study with ALMA (Tamura+)

• Metal/dust enrichment in the EoR: [OIII] and dust in LBG at z = 8.3

Future galaxy survey in the submillimeter

- Simulation: Cross-correlation between 21cm vs. galaxies (Moriwaki+)
- Technical challenge in submillimeter facilities
- Large Submillimeter Telescope (LST) and synergy with SKA

Introduction

Far-IR Emission as Important Coolant

Properties of FIR Fine Structure Lines

Tielens & Hollenbach 2005, Phys. Rev.

6

[C II] 158 µm: Star-formation indicator

ISO/LWS [CII] image of M31 (Rodriguez--Fernandez+2006)

log L_[CII] (erg/s)

SFR — L_[CII] correlation (De Looze+2011)

[C II] 158 µm: Important coolant

BR1202-0725 @ z = 4.7 (lono+2006)

t_on-source ~ 25 min

BR1202-0725 @ z = 4.7 (Wagg+2012)

200

400

ULAS J1120 @ z = 7.1 (Venemans+2017)

SDSS QSOs @ z ~ 6 (Wang+2013)

Suppressed C⁺ and dust in young galaxies?

- Many ALMA non-detections of z > 6 LAEs/LBGs in
 [CII]158um and submm continuum have been reported.
 - Walter+2012, Kaneker+2012, Ouchi+2013, Ota+2014, Maiolino+2015, Inoue+2016
 - Something different from post EoR seems to happen...!

Strong [OIII] 88 um in a local HII region

 ISO LWS observations of eta Car (Mizutani, Onaka & Shibai 2002)

Wavelength (µm)

Herschel Dwarf Galaxy Survey

11

Local dwarfs as low-z analogs of typical SF galaxies at high-z.

[OIII]88 is the brightest

• L_[OIII]88 / L_[CII]158 > 1 (up to ~10).

High-z [OIII] 88um detections thus far

Two ZEUS/CSO [OIII]88 detections (Ferkinhoff+2010)

- \bullet detections in a z = 3.9 QSO and a z = 2.8 SMG
- Only limited to lensed dusty sources

Figure 1. ZEUS/CSO detection of the [O III] $88 \,\mu\text{m}$ line from APM 08279+5255. Velocity is referenced to z = 3.911. The continuum emission has been subtracted off.

Figure 2. ZEUS/CSO detection of the [O III] $88 \,\mu\text{m}$ line from SMM J02399–0136. Velocity is referenced to z = 2.8076. The continuum emission has been subtracted off.

Ferkinhoff+2010

on the

Is [OIII] 88um detection feasible?

- Simulation where [OIII]88 luminosities are scaled by SFR.
- ALMA will detect [OIII]88 at z > 7!

A. K. Inoue, I. Shimizu, YT+2014

First detection of [O III] in the reionization era

SXDF-NB1006-2 at z = 7.215

Inoue A. K, YT, et al. (2016) Science, 352, 1559

Young star-forming metal-poor galaxy
 Age < 30 Myr, SFR ~ 300 Mo/yr, Z = 0.05–1 Zo
 No dust and [C II] emission were found.

Furthest detection of [O III] at z = 9.1096

MACS1149-JD1

Hashimoto, incl. YT et al. (2018) Nature, 557, 392

Low-mass star-forming galaxy

• Age = 290 Myr, SFR ~ 4 (μ_g /10)⁻¹ Mo/yr, Z = 0.05–1 Zo

No dust emission

Early dust production

Diversity in dust contents in EoR

- Small dust mass in LAEs (e.g. Ouchi+13, Ota+14, Inoue+16,)
- Large dust mass of ~10^7 M_{\odot} in LBGs (Watson+15, Laporte+17)

• **Dust budget crisis**: How galaxies got dust so quickly?

- Type II SNe is the major contributors to dust mass at z > 8
- Grain growth in dense ISM plays an important role?

Watson+2015, Nature

Laporte+2017

Venemans+2017

Redshift Record

#	Redshift	Object	References	Telescope/Line	Dust?
1	9.110	MACS J1149-JD	Hashimoto+ (2018)	ALMA/[OIII]	Ν
2	8.683	EGSY-2008532660	Zitrin+ (2015)	Keck/Ly a	n/a
3	8.38	A2744_YD4	Laporte+ (2017)	ALMA/[OIII]	Υ (4σ)
4	8.312	MACS0416_Y1	Tamura+ (2019)	ALMA/[OIII]	Υ
5	7.664	z7_GSD_3811	Song+ (2016)	Keck/Ly a	n/a
6	7.640	MACS1423-z7p64	Hoag+ (2017)	HST/Lyα & ALMA/[CII]	Ν
7	7.541	ULAS J1342+0928	Banados+(2017)	Magellan/Lyα & ALMA/[CII]	Υ
8	7.508	z8-GND-5296	Finkelstein+ (2013)	Keck/Ly a	n/a
9	7.477	EGS-zs8-2	Stark+(2018)	Keck/Lyα, CIII]1909	n/a
10	7.452	GS2_1406	Larson+ (2018)	HST/Lyα	n/a
11	7.212	SXDF-NB1006-2	Shibuya+(2012) Inoue, YT+ (2016)	Subaru+Keck/Lya ALMA/[OIII]	Ν

Case Study with ALMA

Motivations

Key questions:
Can submillimeter telescopes serve as "z-machine" at z > 8?
How and when metal enrichment happened?
Why dust exists in the earliest universe?

Purpose:

ALMA observations of a galaxy at EoR

- SED modeling with [OIII] + dust
- Dust mass evolution modeling

Target: Frontier Field candidate LBG "MACS0416_Y1"

• The best among > 100 LBGs at z > 8 • Bright ($H_{160} = 26.0 \text{ AB}$, $\mu_g = 1.4$) • Well-constrained redshift (z_ph ~ 8.3–8.7) • Accessible from ALMA (Cycle 4)

ALMA + [OIII] reveals a spectroscopic redshift

(YT+2019)

• Spectroscopic redshift $z = 8.3118 \pm 0.0003$

Dust detection at S/N = 7.6

• Second detection of dust at z > 8• S_850um = 137 ± 26 μ Jy

Background: HST/F160W Spatially resolved • Size: 0".36 × 0".10 = 1.7 × 0.5 kpc • Tracing UV emission Peak at/between E-C clumps Large dust mass \bigcirc assuming T_dust = 50 K, β = 1.5... ~1 kpc $L_TIR = (1.7 \pm 0.3) \times 10^{11} L_{\odot}$ Ε W ● M_dust = (0.4 ± 0.1) × 10^7 M⊙ YT+18, submitted

Contours: 850 um continuum

[O III]-to-IR Luminosity Ratio

MACS0416_Y1 is a scale-up version of local dwarfs.

How does "dust" coexist with UV SED?

PANHIT (Mawatari+2019, in prep.)

 Stellar population synthesis analysis with Rest-frame UV-optical and FIR [OIII] + dust continuum

SED components

- Stellar: Bruzual & Charlot 2003 (BC03)
- Nebular: SFR -> N_ion -> H β -> Nebular (Inoue+11) SFR + Z -> [OIII]88 (Inoue+14)
- Dust (FIR): Local LIRGs (Rieke+09)
- Three extinction curves are used
 - Calzetti, Milky Way (MW), Small Magellanic Cloud (SMC)
 - 2175 A bump (carbon) is evident in the MW law

Fitting parameters

```
Dust attenuation A_V (mag)

Age \tau_{age} (Myr)

SFH \tau_{SFH}^{-1} (Gyr<sup>-1</sup>)<sup>#</sup>

Metallicity Z (Z_{\odot})

LyC escape fraction f_{esc}

Stellar mass M_{star} (10<sup>8</sup>M_{\odot})

SFR (M_{\odot} yr<sup>-1</sup>)<sup>†</sup>

L_{IR} (10<sup>11</sup>L_{\odot})<sup>†</sup>
```

SED Fits: Results

 UV-bright stellar component can co-exist with luminous dust component *if the dust mass pre-exists*.

Favors a young, but moderately metal-enriched solution

• Age ~ 4 Myr, metallicity = 0.2 Z_Sun

SED Fits: Results

 UV-bright stellar component can co-exist with luminous dust component *if the dust mass pre-exists*.

Favors a young, but moderately metal-enriched solution

• Age ~ 4 Myr, metallicity = 0.2 Z_Sun

SED Fits: Results

 UV-bright stellar component can co-exist with luminous dust component *if the dust mass pre-exists*.

Favors a young, but moderately metal-enriched solution

• Age ~ 4 Myr, metallicity = 0.2 Z_Sun

Dust mass evolution model (Asano & Takeuchi+13)

• Dust budget crisis: How did a galaxy get dust so quickly?

• Can our current understanding of dust evolution explain the observed M_dust?

Setup

• SF timescale tau_SF = 0.3 Gyr

at z ~ 8

Roughly scaled so that predicted M_star and SFR match the observed ones

Credit: Tsutomu T. Takeuchi

Dust and metallicity cannot be reproduced...!

• More massive (~1e9 M_Sun), mature (~0.1 Gyr) stellar component is required to reproduce $M_{\rm dust} \approx 4 \times 10^6 M_{\odot}$

Underlying massive, mature stellar component

• A mature component $(3 \times 10^9 M_{\odot}, \text{ age} = 0.1 \text{ Gyr})$ as the origin of dust can coexist with the young component.

What we learned from submm + NIR observations

Artist's impression (Credit: NAOJ)

Futre prospects

- Sub-kpc ALMA imaging of multi-phase ISM in dust (MCs), [CII] (PDRs) and [OIII] (HII)
- JWST/WFIRST search for "past star-formation" components

Future Galaxy Survey in the Submillimeter

Far-Infrared Fine-Structure Lines

• Reach z = 20. Competitive with JWST/NIRSpec C III]1909A

Line Emission from HII region

Moriwaki+ (incl. YT) 2018

CLOUDY output

Properties of high-z [OIII] emitters

- well-established star forming galaxies are selectively observed
- L_{OIII88} is higher than expected from the local relation: **high ionization**

parameter & moderate metallicity

Cross-correlation: 21cm vs galaxies

- 21-cm observation:

WFA, LOFAR, PAPER, HERA, SKA Only statistical information: power spectrum Foreground (synchrotron) should be excluded.

- galaxy survey/intensity mapping:

LAE (HSC), [CII] (CONCERT, TIME), CO (COMAP), [OIII] (SPHEREx?)

- Foreground contamination is excluded in cross-correlation signal

Result: Ideal 3D Cross-Power Spectrum

z = 7.5, <x_{HI}> = 0.46

100h⁻¹ cMpc

Result: Ideal 3D Cross-Power Spectrum

No turnover can be seen: observed galaxies reside in large HII bubble. \rightarrow It is better to focus on large-scale power spectrum (at least for a while).

New discovery space?

HerMES Lockman Hole © HerMES / ESA

Large Submm Telescope

- Large aperture (D = 50 m)
- Wide field of view (> 0.5 deg)
- Long-submm/mm frequency band
- Survey-oriented

SKA Design Studies - Virtual Hydrogen Cone

CO/[CII]/[OIII] Tomography

CO/[CII]: representative emission lines in mm-FIR. Benefit from negative k-correction of CO ladder and FIR lines. Overcome the confusion problems.

Sensitivity-Limited Survey with LST

- The depth achieved in the 2 deg² survey is comparable to that obtained in a 10-hr ALMA observation, but the survey area is ~13000 times larger than the ALMA FoV at 3 mm.
- The survey can detect the MW-like galaxies at $z \sim 2$.

Light cone from the LST 2-deg² Survey

SKA Design Studies - Virtual Hydrogen Cone

CO/[CII]/[OIII] Tomography

EOR Epoch of Reionization

Search for earliest "hidden" galaxies,

first generation galaxies

RSD Redshift Space Distortion

Verify GR by estimating the growth rate of structure, dark energy problem

LSS Cosmic Large-Scale Structure

Investigate the correlation between dark and baryonic matters from clustering analysis, dark matter problem

CSFH Cosmic Star-formation History

Investigate mass/luminosity function of molecular gas as a function of redshift, "hidden" history of baryonic matter

Evolution of Galaxies

Cosmic evolution of galaxies proved through properties of interstellar medium

... and serendipitous discoveries

Line emitters, transient and variables, ...

●サブミリ波によって、宇宙再電離期の銀河の ISM 物理状態・ 進化や星形成活動の変遷がわかってきた