銀河進化と遠方宇宙 - 2019.3.11 - Kanagawa Univ

天体物理学的効果の中性水素 のクラスタリングへの影響

<u>Rika Ando¹</u>

arXiv:1808.01116

Collaborators: Atsushi J Nishizawa¹ Kenji Hasegawa¹ Ikkoh Shimizu² Kentaro Nagamine²

¹Nagoya University, ²Osaka University

Contents

I. Introduction

- galaxy survey
- 21 cm line intensity mapping

2. HI bias

- BAO peak scale
- scale dependence

3. Redshift space distortion of HI

- theoretical model
- measure using simulation data
- SKA

4. Summary

宇宙の加速膨張と大規模構造

宇宙の加速膨張の起源 (**dark energy** や **modified gravity**) _{斥力を及ぼすエネルギー}一般相対論を拡張

- ・膨張率の変化
- 密度ゆらぎの進化

大規模構造の探査による制限

→ パワースペクトル,相関関数,BAO,RSD ...

宇宙のものさしとしてのBAO

Baryon Acoustic Oscillation (バリオン音響振動)

- 宇宙初期に物質の分布に刻印されたゆらぎ
- 特徴的な振動スケールの値は精密に測定

0

Redshift Space Distortion (赤方偏移空間歪み)

- 天体の特異速度によって赤方偏移空間における
 相関関数に歪み(非等方性)が生じる
- RSDの観測より、密度ゆらぎの成長率 f へ制限

5 /26

従来の銀河サーベイ

※点は銀河

銀河をトレーサー大規模構造の探査

6 /26

メリット

- 銀河の3次元分布が得られる
- 理論モデルが確立されている

デメリット

• 遠方の銀河の赤方偏移の観測が困難

ダークマターの新たなトレーサーとしての中性水素(HI)

21cm線 intensity mapping

銀河を分解せずにHIから放射された21cm線強度を観測

→ 中性水素の3次元分布

21cm線intensity mappingによる宇宙論モデルへの制限

先行研究:線形モデルを用いた将来観測による制限予測

SKA2 galaxy survey Euclid galaxy survey Bull et al. 2015

intensity mappingではdark energyの パラメータへの強い制限が期待

21 cm線intensity mappingによる宇宙論モデルへの制限

先行研究:線形モデルを用いた将来観測による制限予測

ダークマターのハロー質量に応じてHIの分布を計算

Sarkar et al. 2018, Wang et al. 2019

9 126

※HIバイアス:HIとダークマターの密度分布のずれ

本研究の特色: 流体シミュレーション

宇宙論的流体シミュレーションを使用

• ダークマターだけでなく中性水素の時間発展も同時に計算

0 26

本研究の特色: 流体シミュレーション

宇宙論的流体シミュレーションを使用

• ダークマターだけでなく中性水素の時間発展も同時に計算

0 26

<u>銀河スケール以下の物理モデル</u>の不定性が存在 星形成や銀河からの質量放出

物理モデルの異なる2つのシミュレーションを使用

HIの<u>宇宙論的なスケール</u>のクラスタリングへの影響を調べる

e.g. BAOのスケール rh~100Mpc/h

*Uniform UVB model, 宇宙論パラメータや粒子解像度はほとんど同じ

HI bias

I. Introduction

- galaxy survey
- 21 cm line intensity mapping

2. HI bias

- BAO peak scale
- scale dependence

3. Redshift space distortion of HI

- theoretical model
- measure using simulation data

4. Summary

バイアスのBAO振動スケールへの影響

観測から得られるBAOの振動スケールは

線形理論から予言される値からずれる

1

- 重力の非線形性
- バイアスのスケール依存性

 $δ_{HI} = b_{HI}(k) \delta_{m}$

密度ゆらぎ:
$$\delta = \frac{\rho}{\bar{\rho}}$$
-

…… バイアスを持つトレーサー

密度場からHIとダークマターのパワースペクトルを測定

<u>method:</u>

|<z<5のパワースペクトルの比をとることで

HIバイアスを測定・モデル化

$$b(k) = \frac{P_{\text{HI}-\text{m}}}{P_{\text{m}}}$$
 HI-matter 相互相関
HIバイアス P_{m} matter 自己相関

15/26

 $\frac{k_{\rm max}^2}{6\pi^2} \int_0^{k_{\rm max}} dk \, P^{\rm lin}(k,z) = C \sim 0.7$

スケール依存性と天体物理の影響

7 /26

filled: Illustris (w/ AGN)
open: Osaka (w/o AGN)

Redshift Space Distortions of HI

I. Introduction

- galaxy survey
- 21 cm line intensity mapping

2. HI bias

- BAO peak scale
- scale dependence

3. Redshift space distortion of HI

- theoretical model
- measure using simulation data

4. Summary

RSDモデルの整備と手法

SKAによる21cm線intensity mapping

大規模電波干渉計のSKAによるintensity mapping

観測量:輝度温度 $\delta T_b = \frac{3}{32\pi} \frac{hc^3 A_{10}}{k_B m_p \nu_{21}^2} \frac{(1+z)^2}{H(z)} \bar{\rho}_{\text{HI}} \delta_{\text{HI}}$

Bull et al. 2015

	SKA1-MID	
	Band 1	Band 2
T _{inst} [K]	28	20
z_{\min}	0.35	0.00
Zmax	3.05	0.49
v_{\min} [MHz]	350	950
v_{max} [MHz]	1050	1760
$D_{\rm dish}$ [m]	15	15
$\delta v [m kHz]$	50	50
$\Omega_{\rm sur} \left[10^3 \ {\rm deg}^2\right]$	25	25
$N_{\rm dish} \times N_{\rm beam}$	254×1	254×1

0<z<3 周波数分解能:50kHz 22/26

角度方向の密度ゆらぎは均される

	干渉計モード interferometer	単一鏡モード single-dish
角度方向の 空間分解能	~2cMpc/h @z=/	~65cMpc/h @z=I

0<z<3 周波数分解能:50kHz 22/26

角度方向の密度ゆらぎは均される

	干渉計モード interferometer	単一鏡モード single-dish
角度方向の 空間分解能	~2cMpc/h @z=1	~65cMpc/h @z=/

Osaka simulation 赤方偏移空間における I+8_{HI} map at z=3

0<z<3 周波数分解能:50kHz 22/26

角度方向の密度ゆらぎは均される

	干渉計モード interferometer	単一鏡モード single-dish
角度方向の 空間分解能	~2cMpc/h @z=/	~65cMpc/h @z=/

Osaka simulationから測定したP_{2D}

23 / 26

推定値の比較: HIバイアス

25 / 26

+TNS 補正項

Taruya et al. 2010

推定値の比較: HIバイアス

25/26

推定値の比較: HIバイアス

25/26

目的:中性水素(HI)を用いた宇宙論解析のための理論的枠組みの構築

手法:2つの宇宙論的流体シミュレーションを用いて

HIバイアスとHIの赤方偏移空間歪み(RSD)を測定

<u>結果 実空間で測定したHI bias</u>

- スケール依存性 (at z>3)
- <u>銀河スケール以下の物理</u>モデルの不定性の影響は小さい
 e.g. 星形成や超新星/AGN フィードバック

結果 赤方偏移空間歪み(RSD)

- 銀河サーベイで用いられる理論モデルをHIにも適用可能
- ハローとHIの質量の関係のより詳細な調査が必要

Thank you for listening

arXiv:1808.01116