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Final-pc problem
• PTAのターゲット　　　　　　　　　　　　　　　　　　　　　　　　　

進化の後期段階にあるSMBH連星 

• 連星進化の初期段階                                                                    
ガス(摩擦) & 星(散乱)により                                                    
エネルギー、角運動量が引き抜かれる 

• 連星進化の中盤(~ 1pc)                                                            
連星周辺にガスや星は無い                                                                         
- これ以降、軌道はどう縮むか？                                                        
→ pcスケールの観測は重要                                                         
⇒ 新検出方法

?
初期段階

後期段階
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検出原理
• 既存のPTA …                                                                        
周波数：重力波 << PTAの観測周波数帯                                        
→ 重力波の振幅は時間に対し直線的に変化                                   
⇒ スピンダウン率の補正として吸収され、検出できない… 

• スピンダウン率の補正                                                             
- 重力波により生じるtiming residual 

!
　- スピンダウン率の補正項
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• 補正後のスピンダウン率 

!

• bias factor                                                                               
… 四重極パターンが見える                                                                
(Earth termのみの場合) 

• 重力波が十分強い場合                                                              
- スピンダウン率分布が異なる領域で異なる性質を持つ                 
→ 各領域の分布を比較する。                                                     
⇒ 重力波の検出

2

our method quantitatively by simulating the spin-down
rate statistics of millisecond pulsars considering future
pulsar surveys by the SKA. Assuming the position of
a GW source and the polarization angle of the GWs,
pulsars are divided into two groups according to their
position in the sky. If the GW is strong enough, the
difference in the spin-down distribution of the two groups
exceeds the statistical fluctuation. This is the signal of a
ultra-low frequency GW.
This paper is organized as follows. In section 2, we de-

scribe the detection principle of a new method for ultra-
low frequency GWs. In section 3, we simulate the sensi-
tivity of this method and represent its results. In section
4, we give a discussion and summary.

2. DETECTION PRINCIPLE

The timing residual due to GWs, the difference be-
tween the actual arrival time of pulses from a pulsar and
the expectation without GWs, is given by

rGW(t) =
∑

A=+,×

FA(Ω̂, p̂)

∫ t

∆hA(t
′, Ω̂)dt′ (1)

where p̂ and Ω̂ are the direction of the pulsar and GW
propagation, respectively. Here ∆hA(t, Ω̂) is the differ-
ence of the metric perturbation between the earth and
pulsar and given by

∆hA(t, Ω̂) = hA(t, Ω̂)− hA(tp, Ω̂) (2)

where tp = t − L/c where L is the distance to the pul-
sar. In the following, we will consider only the first term
(”the earth term”) and neglect the effects of the second
term (”the pulsar term”) as is often done in the study
of PTA. The time evolution of the timing residual re-
flects the wave form of GWs. If the period of GWs is
much longer than the observational time span, however,
the timing residual changes linearly with time. For GWs
which have a constant time-derivative of the amplitude,
Eq. (2) becomes

∆hA(t, Ω̂) = ḣA(Ω̂)t. (3)

Here, FA(Ω̂, p̂) is the antenna beam pattern which is
given by

FA(Ω̂, p̂) =
1

2

p̂ip̂j

1 + Ω̂ · p̂
eAij(Ω̂), (4)

where eAij(A = +,×) is the GW polarization tensor given
by

e+ij(Ω̂)= m̂im̂j − n̂in̂j (5)

e×ij(Ω̂)= m̂in̂j + n̂im̂j , (6)

where m̂ and n̂ are the polarization basis vectors. Substi-
tuting Eq. (1) into Eq. (3), the timing residual induced
by linearly-changing GWs becomes

rGW(t) =
1

2

∑

A=+,×

FA(Ω̂, p̂)ḣA(Ω̂)t
2. (7)

On the other hand, the timing residual induced by the
pulsar spin down is given by,

rṗ =
1

2

ṗ

p
t2. (8)
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Fig. 1.— Bias factor α(Ω̂, p̂) in the sky for ḣ+ = 0 s−1 and
ḣ× = 10−18 s−1. The symbol ”+” in the figure represents the
source position.
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Fig. 2.— Histogram of log10 ṗ/p [sec−1] of 148 observed pul-

sars with p < 30 ms. Here pulsars in globular clusters and two
ones with negative and extremely large spin-down rates (ṗ/p =
−10−21.2, 10−11.5 [sec−1]) are not included.

Where, p is the pulse period and ṗ is its time derivative,
or the spin-down rate. As can be seen, both Eq. (7) and
(8) have the same time-dependence. Thus, even if such
GWs exist, they just contribute to the correction of ṗ/p,

ṗ

p
=

ṗ0
p

+ α(Ω̂, p̂), (9)

where ṗ0 is the intrinsic spin-down rate, and α(Ω̂, p̂) is
a bias factor due to ultra-low frequency GWs which is
given by

α(Ω̂, p̂) =
∑

A=+,×

FA(Ω̂, p̂)ḣA(Ω̂). (10)

In principle, we cannot separate the GW effect from the
intrinsic ṗ0/p for a single pulsar. Therefore, such low-
frequency GWs cannot be detected by the conventional
PTA method.
However, it should be noted that the value of the bias

factor, α(Ω̂, p̂), depends on the source position, the GW
polarization angle and the pulsar position, and can be
either positive or negative. In fact, the distribution of

ṗ

p
=

ṗ0
p
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スピンダウン率分布の歪度の差
• スピンダウン率分布の変化の概略図 

• 値の小さい部分                                                                    
(図の左側)が                                                                          
重力波の影響を                                                                     
受ける。 

• ２つの分布の違いを                                                                  
特徴づける量                                                                         
→ 歪度
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Fig. 3.— Schematic view of the expected systematic difference
in the distribution of spin-down rates (ṗ/p) of two groups in the
presence of ultra-low frequency GWs with ḣ = 10−18 s−1. The
black line is the assumed intrinsic distribution, which is gaussian
with the mean value and variance which are the same values as
the observed ones (Fig. 2). The dashed (red) and dotted (blue)
lines show the expected observable distributions in the positive
and negative α(Ω̂, p̂) regions (the red and blue regions in Fig. 1),
respectively.

α(Ω̂, p̂) is a quadrupole pattern, as seen in Fig. 1. If
we divide pulsar samples into two groups according to
the sign of the bias factor at the pulsar position, GWs
will induce a systematic difference in the spin-down rate
distribution of the two groups. Thus, even though the
GW signal cannot be extracted from individual pulsars,
it will be possible if we utilize the statistics of spin-down
rates. However, we note that this method is possible only
for a single GW source. In case of multiple sources with
comparable ḣ values or GWB, the pattern of α(Ω̂, p̂) in
the sky is much more complicated and the detection of
such GWs would be very hard. Hereafter, we consider
only a case of a single source.
Fig. 2 shows the histogram of log10 ṗ/p [sec−1] of 148

observed MSPs with p < 30 ms. Here, MSPs in globular
clusters are excluded since they would have been biased
significantly by the gravitational potential and compli-
cated dynamics inside the cluster. Further, one MSP
with a negative spin-down rate (ṗ/p = −10−21.2 [sec−1])
is not included. Also, one MSP with an extremely large
spin-down rate (ṗ/p = 10−11.5 [sec−1]) is excluded as an
outlier. We can see that the value of log10 ṗ/p [sec−1]
ranges from −18.5 to −16 for ”normal” MSPs.
Fig. 3 shows a schematic view of the expected system-

atic difference in the distribution of spin-down rates of
two groups mentioned above. In this figure, GWs with
ḣ = 10−18 s−1 is assumed and thus pulsars with an in-
trinsic spin-down rate of this order or smaller (ṗ0/p !
10−18 s−1) are significantly affected while those with a
much larger value of ṗ0/p are not affected. Overall, the
presence of GWs are reflected in the extension of the left-
hand-side tail of the observed ṗ/p distribution: a short
(long) tail for the positive (negative) α(Ω̂, p̂) group. In
this paper, we characterize this feature with the skewness
of the log10 ṗ/p distribution and consider the difference in
the skewnesses of the two regions as a statistical measure
which reflects the value of ḣ.

3. SIMULATION RESULTS

In this section, we show results of a series of simulations
to evaluate the sensitivity for ultra-low frequency GWs
from a single source. The precision of the determination
of the source position and GW polarization angle is also
investigated.
First, in our simulations, a number of MSPs are lo-

cated randomly in the sky with an isotropic probability
distribution. Then the spin-down rate log10 ṗ/p is given
to each of the MSPs according to a gaussian probability
distribution function with the mean and variance of -17.5
and 0.21, respectively, which are taken from the known
MSP samples (Fig. 2). Given the direction and polar-
ization angle of assumed GWs, the observed spin-down
rates are biased by a factor of α(Ω̂, p̂) depending on the
MSP position.
Next, our method described in the previous section is

applied to the mock MSP data. Assuming the direc-
tion of polarization angle of GWs, the sky is divided into
two regions according to the sign of α(Ω̂, p̂). Then a
histogram of observed values of log10 ṗ/p is obtained for
each region and the difference of skewness between the
two histograms is computed. We obtain a probability
distribution of the skewness difference from 10,000 real-
izations. It should be noted that the simulation results
are independent of the type of GW sources, if GWs come
from a single source. Also, because MSPs are distributed
isotropically, every source position and GW polarization
angle are equivalent.
Let us begin with the results of our fiducial simulations

with 3,000 MSPs. This number of MSPs is expected by
a future pulsar survey with SKA2 (Keane et al. 2015).
Considering a situation where we have specific targets
such as Sgr A∗ and M87, we set the GW source position
to the correct values. In addition, the GW polarization
angle is also set to the correct value. This is not practical
and we discuss this later in this section. Then the bias
factor α(Ω̂, p̂) is fixed and mock MSPs are divided into
two groups. Fig. 4 shows the probability distribution of
the skewness difference. A large ḣ value leads to a large
skewness difference and the average values are 0.20, 0.54
and 0.84 for ḣ = 10−19, 3×10−19 and 10−18, respectively,
while the standard deviations are 0.11, 0.14 and 0.16,
respectively. On the other hand, in the absence of GWs,
the average value of skewness difference is zero and the
standard deviation is 8.2×10−2. A hypothesis of no GWs
is rejected for the skewness difference larger than 0.17 at
98% confidence. Thus, GWs of ḣ " 3 × 10−19 would be
detected with 3,000 MSPs. We note that some MSPs
have negative ṗ and they are removed from the analysis.
Figs. 5 and 6 show the probability distributions of the

skewness difference for 1,000 and 10,000 MSPs, respec-
tively. The number of MSPs is expected to reach 1,000
by an SKA1 survey. Although 10,000 MSPs are not real-
istic even with the SKA2, we consider this case in order
to investigate the ultimate capability of this method. As
the number of MSPs increases (decreases), the standard
deviation of the probability distribution decreases (in-
creases) and the sensitivity for GWs is estimated to be
about ḣ ∼ 10−18 with 1,000 MSPs and ḣ ∼ 10−19 with
10,000 MSPs. Thus, the sensitivity improves almost pro-
portionally to the number of MSPs.

↵ > 0

↵ < 0

ḣ = 10�18 の重力波を加えた場合

重力波なし
の領域
の領域



感度のシミュレーション



歪度の差のシミュレーション
• × 実際に観測されるMSP　→　◯ mock MSP 

• MSPの位置 … 等方的 

• intrinsicな分布                                                                     
- 平均：- 17.5                                                                     
- 分散：0.21                                                                          
のガウシアン 

•                                                                                          
→  検出可能
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Fig. 4.— Probability distribution of the skewness difference of the
log10 ṗ/p distributions between the positive and negative α(Ω̂, p̂)
groups in the case of 3,000 MSPs. The vertical axis represents the
probability per unit skewness. The navy line is one in the absence
of GWs. The red, orange and green lines correspond to the cases
with ḣ = 10−18, 3× 10−19 and 10−19 s−1 respectively.
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Fig. 5.— Probability distribution in the case of 1,000 MSPs. The
line types are the same as Fig. 4.
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Fig. 6.— Probability distribution in the case of 10,000 MSPs.
The line types are the same as Fig. 4.

In the above analyses, we assumed the intrinsic
log10 ṗ0/p distribution is gaussian. However, as we show
below, the log10 ṗ0/p distribution of known MSPs is not
gaussian. To test the gaussianity, we use the Jarque-Bera
test. The test statistic JB is defined as

JB =
n

6

[
S2 +

1

4
(K − 3)2

]
, (11)

where S and K are the sample skewness and kurtosis,
respectively, and n is the number of samples. If the sam-
ple distribution is gaussian, this test statistic follows the
χ2 distribution with 2 degrees of freedom, and the criti-
cal value for 99.5% confidence is 10.6. From the known
MSP samples in Fig. 2, we obtain S = 1.2 and K = 5.9,
which leads to JB = 81.2 and rejects the gaussianity
with more than 99.9% confidence (for the interpretation
of the log10 ṗ0/p distribution, see Kiziltan & Thorsett
(2010)).
Thus, we study the effect of non-gaussianity of intrinsic

log10 ṗ0/p distribution. To do this, we utilize a general-
ized normal distribution given by

f(x) =
φ(y)

α− κ(x− ξ)
, (12)

where φ(y) is the standard normal distribution and y is
given by

y =

{
− 1

κ log
[
1− κ(x−ξ)

α

]
(κ ̸= 0)

x−ξ
α (κ = 0).

(13)

Here, ξ, α and κ are the location, scale and shape pa-
rameters, respectively, and the mean value µ, variance
σ2 and skewness S are expressed by these parameters.

µ= ξ − α

κ

(
eκ

2/2 − 1
)

(14)

σ2=
α2

κ2
e2

(
eκ

2

− 1
)

(15)

S=
3eκ

2 − e3κ
2 − 2

(eκ2 − 1)3/2
sign(κ) (16)

Assuming that the intrinsic log10 ṗ0/p distribution fol-
lows the generalized gaussian distribution, we perform
the same simulations as above with 3,000 MSPs. Fig.
7 shows the probability distribution of the skewness dif-
ference for the intrinsic skewness of -1.2, 0 (gaussian)
and 1.2. In the absence of GWs, the intrinsic skewness
increases the standard deviation of the probability dis-
tribution of the skewness difference. On the other hand,
in the presence of GWs (ḣ = 10−18 s−1), the intrin-
sic skewness not only widens but also shifts the proba-
bility distribution. As can be seen, a positive intrinsic
skewness enhances the skewness difference. This is be-
cause the median of the intrinsic log10 ṗ0/p distribution
is smaller than the average and the number of MSPs with
a small value of log10 ṗ0/p increases for a fixed value of
the average. Thus a positive intrinsic skewness, which
is indicated by the known MSP samples, enhances the
detectability of GWs. Contrastingly, a negative intrinsic
skewness would reduce the detectability.
In the simulations shown above, we assumed the cor-

rect GW polarization angle is known. If we assume a

ḣ ⇡ 3⇥ 10�18



intrinsicな分布がもともとskewnessを持つ場合

• Jarque-Bera検定によると、                                                  
観測される分布はガウシアンでは無い

• • • •
5

1.0

2.0

3.0

4.0

5.0

-0.5  0  0.5  1  1.5  2

P
ro

b
ab

il
it

y

Difference of skewnesses

h
 ·
 = 0

h
 ·
 = 0, S = 1.2

h
 ·
 = 0, S = -1.2

h
 ·
 = 10

-18

h
 ·
 = 10

-18
, S = 1.2

h
 ·
 = 10

-18
, S = -1.2

Fig. 7.— Probability distribution of the skewness difference for
non-gaussian intrinsic log10 ṗ0/p distribution with 3,000 MSPs.
The navy and red lines are ones with no GWs and ḣ = 10−18 s−1,
respectively. The solid, dashed and dotted lines correspond to the
cases with intrinsic skewness of 0 (gaussian), 1.2 and -1.2, respec-
tively.

wrong value of polarization angle, the skewness differ-
ence will be reduced. To see this, we perform simulations
where the assumed polarization angle is deviated by 1◦,
10◦ and 30◦ from the correct one. Fig. 8 shows the resul-
tant probability distribution of the skewness difference in
the case of 3,000 MSPs and ḣ = 10−18 s−1. From the
figure, we see that, if the deviation is more than 10◦,
the skewness difference becomes significantly small. In
a practical situation, we need to calculate the skewness
differences varying the polarization angle while fixing the
target position. Then, a polarization angle which gives
the maximum skewness difference can be used as an es-
timate of the correct polarization angle. Fig. 9 shows
the probability distribution of the deviation angle which
gives the maximum skewness difference for 1,000, 3,000
and 10,000 MSPs and ḣ = 10−18 s−1. The mean is lo-
cated at 0◦, that is, the estimation is not biased. On
the other hand, the standard deviation decreases as the
number of MSPs increases: 42◦, 32◦ and 19◦ (1σ) for
1,000, 3,000 and 10,000 MSPs, respectively. This can be
regarded as the precision of determination of the polar-
ization angle.

4. DISCUSSION AND SUMMARY

In this paper, we evaluated the potential of the
new detection method for ultra-low frequency GWs (!
10−10 s−1) from a single source proposed in Yonemaru
et al. (2016). This method is based on the statistics
of observed spin-down rates of MSPs and GW signal
appears as the difference of skewness between the spin-
down rate distributions of two MSP groups which are
constructed according to the MSP position in the sky.
We applied the method to the mock samples of MSPs to
estimate the sensitivity. As a result, we found that GWs
of ḣ = 3×10−19 s−1 is detectable if we have 3,000 MSPs
and the sensitivity is roughly proportional to the number
of MSPs.
This method can measure only the time derivative of

GW amplitude, which is almost constant during the ob-
servation period. Thus, the time variation of GWs, that
is, the waveform cannot be seen so that there is a degen-
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Fig. 8.— Probability distribution of the deviation angle which
gives the maximum skewness difference in the case of 3,000 MSPs
and ḣ = 10−18 s−1. The solid, dashed and dotted lines correspond
to the deviation of 1◦, 10◦ and 30◦, respectively.
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Fig. 9.— Precision of the determination of GW polarization angle
in the case of ḣ = 10−18 s−1. The numbers of MSPs are 10,000
(solid), 3,000 (dashed) and 1,000 (dotted).

eracy between the amplitude and frequency even if we
obtain the time derivative.
Let us see more details assuming that the GW source

is a SMBH binary. The amplitudes of GWs for a circular
binary are given by (Gopakumar & Iyer 2002)

hA = h0 (ûiûj − r̂ir̂j) eA,ij , (17)

where, h0 is written by

h0 =
2 (GM)5/3(πfGW)2/3

c4R
, (18)

where G is the gravitational constant, c is the speed of
light, M = (m1m2)3/5/(m1+m2)1/5 is the chirp mass of
the binary where m1 and m2 are the component masses,
R is the distance to the source and fGW is the GW fre-
quency. Here, r̂ and û = ˙̂r are the relative position and
velocity vectors for the two black holes in the orbit de-
scribed by the orbital phase φ which is the angle mea-
sured from m̂. The time derivatives of the amplitudes is
given by

ḣA = −1

2
ḣ0 (r̂iûj + ûir̂j) eA,ij (19)



偏光角の決定精度
• 偏光角がずれる → 歪度の差は小さくなる 

!

!

!

• 実線 … 正しい偏光                                                                            
破線 … ずれた(仮定した)                                                                      
偏光
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Fig. 7.— Probability distribution of the skewness difference for
non-gaussian intrinsic log10 ṗ0/p distribution with 3,000 MSPs.
The navy and red lines are ones with no GWs and ḣ = 10−18 s−1,
respectively. The solid, dashed and dotted lines correspond to the
cases with intrinsic skewness of 0 (gaussian), 1.2 and -1.2, respec-
tively.

wrong value of polarization angle, the skewness differ-
ence will be reduced. To see this, we perform simulations
where the assumed polarization angle is deviated by 1◦,
10◦ and 30◦ from the correct one. Fig. 8 shows the resul-
tant probability distribution of the skewness difference in
the case of 3,000 MSPs and ḣ = 10−18 s−1. From the
figure, we see that, if the deviation is more than 10◦,
the skewness difference becomes significantly small. In
a practical situation, we need to calculate the skewness
differences varying the polarization angle while fixing the
target position. Then, a polarization angle which gives
the maximum skewness difference can be used as an es-
timate of the correct polarization angle. Fig. 9 shows
the probability distribution of the deviation angle which
gives the maximum skewness difference for 1,000, 3,000
and 10,000 MSPs and ḣ = 10−18 s−1. The mean is lo-
cated at 0◦, that is, the estimation is not biased. On
the other hand, the standard deviation decreases as the
number of MSPs increases: 42◦, 32◦ and 19◦ (1σ) for
1,000, 3,000 and 10,000 MSPs, respectively. This can be
regarded as the precision of determination of the polar-
ization angle.

4. DISCUSSION AND SUMMARY

In this paper, we evaluated the potential of the
new detection method for ultra-low frequency GWs (!
10−10 s−1) from a single source proposed in Yonemaru
et al. (2016). This method is based on the statistics
of observed spin-down rates of MSPs and GW signal
appears as the difference of skewness between the spin-
down rate distributions of two MSP groups which are
constructed according to the MSP position in the sky.
We applied the method to the mock samples of MSPs to
estimate the sensitivity. As a result, we found that GWs
of ḣ = 3×10−19 s−1 is detectable if we have 3,000 MSPs
and the sensitivity is roughly proportional to the number
of MSPs.
This method can measure only the time derivative of

GW amplitude, which is almost constant during the ob-
servation period. Thus, the time variation of GWs, that
is, the waveform cannot be seen so that there is a degen-
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eracy between the amplitude and frequency even if we
obtain the time derivative.
Let us see more details assuming that the GW source

is a SMBH binary. The amplitudes of GWs for a circular
binary are given by (Gopakumar & Iyer 2002)

hA = h0 (ûiûj − r̂ir̂j) eA,ij , (17)

where, h0 is written by

h0 =
2 (GM)5/3(πfGW)2/3

c4R
, (18)

where G is the gravitational constant, c is the speed of
light, M = (m1m2)3/5/(m1+m2)1/5 is the chirp mass of
the binary where m1 and m2 are the component masses,
R is the distance to the source and fGW is the GW fre-
quency. Here, r̂ and û = ˙̂r are the relative position and
velocity vectors for the two black holes in the orbit de-
scribed by the orbital phase φ which is the angle mea-
sured from m̂. The time derivatives of the amplitudes is
given by

ḣA = −1

2
ḣ0 (r̂iûj + ûir̂j) eA,ij (19)

2

our method quantitatively by simulating the spin-down
rate statistics of millisecond pulsars considering future
pulsar surveys by the SKA. Assuming the position of
a GW source and the polarization angle of the GWs,
pulsars are divided into two groups according to their
position in the sky. If the GW is strong enough, the
difference in the spin-down distribution of the two groups
exceeds the statistical fluctuation. This is the signal of a
ultra-low frequency GW.
This paper is organized as follows. In section 2, we de-

scribe the detection principle of a new method for ultra-
low frequency GWs. In section 3, we simulate the sensi-
tivity of this method and represent its results. In section
4, we give a discussion and summary.

2. DETECTION PRINCIPLE

The timing residual due to GWs, the difference be-
tween the actual arrival time of pulses from a pulsar and
the expectation without GWs, is given by

rGW(t) =
∑

A=+,×
FA(Ω̂, p̂)

∫ t

∆hA(t
′, Ω̂)dt′ (1)

where p̂ and Ω̂ are the direction of the pulsar and GW
propagation, respectively. Here ∆hA(t, Ω̂) is the differ-
ence of the metric perturbation between the earth and
pulsar and given by

∆hA(t, Ω̂) = hA(t, Ω̂)− hA(tp, Ω̂) (2)

where tp = t − L/c where L is the distance to the pul-
sar. In the following, we will consider only the first term
(”the earth term”) and neglect the effects of the second
term (”the pulsar term”) as is often done in the study
of PTA. The time evolution of the timing residual re-
flects the wave form of GWs. If the period of GWs is
much longer than the observational time span, however,
the timing residual changes linearly with time. For GWs
which have a constant time-derivative of the amplitude,
Eq. (2) becomes

∆hA(t, Ω̂) = ḣA(Ω̂)t. (3)

Here, FA(Ω̂, p̂) is the antenna beam pattern which is
given by

FA(Ω̂, p̂) =
1

2

p̂ip̂j

1 + Ω̂ · p̂
eAij(Ω̂), (4)

where eAij(A = +,×) is the GW polarization tensor given
by

e+ij(Ω̂)= m̂im̂j − n̂in̂j (5)

e×ij(Ω̂)= m̂in̂j + n̂im̂j , (6)

where m̂ and n̂ are the polarization basis vectors. Substi-
tuting Eq. (1) into Eq. (3), the timing residual induced
by linearly-changing GWs becomes

rGW(t) =
1

2

∑

A=+,×
FA(Ω̂, p̂)ḣA(Ω̂)t

2. (7)

On the other hand, the timing residual induced by the
pulsar spin down is given by,

rṗ =
1

2

ṗ

p
t2. (8)
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Fig. 1.— Bias factor α(Ω̂, p̂) in the sky for ḣ+ = 0 s−1 and
ḣ× = 10−18 s−1. The symbol ”+” in the figure represents the
source position.
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Fig. 2.— Histogram of log10 ṗ/p [sec−1] of 148 observed pul-
sars with p < 30 ms. Here pulsars in globular clusters and two
ones with negative and extremely large spin-down rates (ṗ/p =
−10−21.2, 10−11.5 [sec−1]) are not included.

Where, p is the pulse period and ṗ is its time derivative,
or the spin-down rate. As can be seen, both Eq. (7) and
(8) have the same time-dependence. Thus, even if such
GWs exist, they just contribute to the correction of ṗ/p,

ṗ

p
=

ṗ0
p

+ α(Ω̂, p̂), (9)

where ṗ0 is the intrinsic spin-down rate, and α(Ω̂, p̂) is
a bias factor due to ultra-low frequency GWs which is
given by

α(Ω̂, p̂) =
∑

A=+,×
FA(Ω̂, p̂)ḣA(Ω̂). (10)

In principle, we cannot separate the GW effect from the
intrinsic ṗ0/p for a single pulsar. Therefore, such low-
frequency GWs cannot be detected by the conventional
PTA method.
However, it should be noted that the value of the bias

factor, α(Ω̂, p̂), depends on the source position, the GW
polarization angle and the pulsar position, and can be
either positive or negative. In fact, the distribution of
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波源がSMBH連星である場合
• 波源が円軌道である場合 

!
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• この手法で得られるのは                                                            
→ 振幅と周波数は縮退している 

• ただ、観測できる周波数帯は限られている。
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観測周波数帯
• 本来、 
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!
• じゃあ、pulsar termを無視できるのは？                                    
→ pulsar termがrandom noiseとして振る舞う場合                    
⇒ 2つのtermの位相差がある程度以上大きい場合 

• 観測周波数帯：
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where     ：パルスの伝播時間⌧

10�13 � 10�10 Hz

pulsar termがrandom noiseとして振る舞う
振幅が直線的に振る舞う
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軌道要素の制限
• 偏光角                                                                                  
→                  の位置 

• 軌道要素の関係式                                                                         
-   ：軌道傾斜角                                                                          
-   ：軌道位相                                                                              
-   ：line of nodesと 

                         のなす角
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our method quantitatively by simulating the spin-down
rate statistics of millisecond pulsars considering future
pulsar surveys by the SKA. Assuming the position of
a GW source and the polarization angle of the GWs,
pulsars are divided into two groups according to their
position in the sky. If the GW is strong enough, the
difference in the spin-down distribution of the two groups
exceeds the statistical fluctuation. This is the signal of a
ultra-low frequency GW.
This paper is organized as follows. In section 2, we de-

scribe the detection principle of a new method for ultra-
low frequency GWs. In section 3, we simulate the sensi-
tivity of this method and represent its results. In section
4, we give a discussion and summary.

2. DETECTION PRINCIPLE

The timing residual due to GWs, the difference be-
tween the actual arrival time of pulses from a pulsar and
the expectation without GWs, is given by

rGW(t) =
∑

A=+,×
FA(Ω̂, p̂)

∫ t

∆hA(t
′, Ω̂)dt′ (1)

where p̂ and Ω̂ are the direction of the pulsar and GW
propagation, respectively. Here ∆hA(t, Ω̂) is the differ-
ence of the metric perturbation between the earth and
pulsar and given by

∆hA(t, Ω̂) = hA(t, Ω̂)− hA(tp, Ω̂) (2)

where tp = t − L/c where L is the distance to the pul-
sar. In the following, we will consider only the first term
(”the earth term”) and neglect the effects of the second
term (”the pulsar term”) as is often done in the study
of PTA. The time evolution of the timing residual re-
flects the wave form of GWs. If the period of GWs is
much longer than the observational time span, however,
the timing residual changes linearly with time. For GWs
which have a constant time-derivative of the amplitude,
Eq. (2) becomes

∆hA(t, Ω̂) = ḣA(Ω̂)t. (3)

Here, FA(Ω̂, p̂) is the antenna beam pattern which is
given by

FA(Ω̂, p̂) =
1

2

p̂ip̂j

1 + Ω̂ · p̂
eAij(Ω̂), (4)

where eAij(A = +,×) is the GW polarization tensor given
by

e+ij(Ω̂)= m̂im̂j − n̂in̂j (5)

e×ij(Ω̂)= m̂in̂j + n̂im̂j , (6)

where m̂ and n̂ are the polarization basis vectors. Substi-
tuting Eq. (1) into Eq. (3), the timing residual induced
by linearly-changing GWs becomes

rGW(t) =
1

2

∑

A=+,×
FA(Ω̂, p̂)ḣA(Ω̂)t

2. (7)

On the other hand, the timing residual induced by the
pulsar spin down is given by,

rṗ =
1
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ṗ
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t2. (8)
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Fig. 1.— Bias factor α(Ω̂, p̂) in the sky for ḣ+ = 0 s−1 and
ḣ× = 10−18 s−1. The symbol ”+” in the figure represents the
source position.
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Fig. 2.— Histogram of log10 ṗ/p [sec−1] of 148 observed pul-
sars with p < 30 ms. Here pulsars in globular clusters and two
ones with negative and extremely large spin-down rates (ṗ/p =
−10−21.2, 10−11.5 [sec−1]) are not included.

Where, p is the pulse period and ṗ is its time derivative,
or the spin-down rate. As can be seen, both Eq. (7) and
(8) have the same time-dependence. Thus, even if such
GWs exist, they just contribute to the correction of ṗ/p,

ṗ

p
=

ṗ0
p

+ α(Ω̂, p̂), (9)

where ṗ0 is the intrinsic spin-down rate, and α(Ω̂, p̂) is
a bias factor due to ultra-low frequency GWs which is
given by

α(Ω̂, p̂) =
∑

A=+,×
FA(Ω̂, p̂)ḣA(Ω̂). (10)

In principle, we cannot separate the GW effect from the
intrinsic ṗ0/p for a single pulsar. Therefore, such low-
frequency GWs cannot be detected by the conventional
PTA method.
However, it should be noted that the value of the bias

factor, α(Ω̂, p̂), depends on the source position, the GW
polarization angle and the pulsar position, and can be
either positive or negative. In fact, the distribution of
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特定の波源：Sgr A*
• MSP：3,000個　→                            の重力波を検出可能 

• Sgr A*                                                                                   
- SMBHの質量：                                                                                   
- 距離：7.9 kpc                                                                                  
→            以上の質量のSMBH                                          
と連星を形成している場合、                                                  
検出可能  at 

ḣ = 3⇥ 10�19 s�1

4.0⇥ 106M�

1015M�

(100 yr)�1 Hz



特定の波源：M87
• M87                                                                                 
- SMBHの質量：                                                                   
- 距離：18.4 Mpc 

• 検出の可能性                                                                           
- 伴星の質量：                                                                       
- 離心率：0.8 以上 

• 右図：さまざまな軌道要素                                                            
に対する振幅の時間微分                                                             
… 軌道半径、離心率、位相、軌道傾斜角
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Fig. 2. Dependence of the time derivative on the mass of the second
SMBH for r1 = 3 pc, e = 0.8, and a1 = 10 pc.

Fig. 3. Dependence of the time derivatives on the displacement (pro-
jected distance) for e = 0.8, φ = 56.◦6. The curves are for m2 = 3m1,
m1, and 0.3m1 from top to bottom. The upper axis shows the semi-
major axis of the main SMBH which corresponds to the displacement
of the lower axis fixing eccentricity and the phase of the orbital motion.
(Color online)

shown in the upper axis, depends on the eccentricity, which
is set to 0.8 in this figure.

Figure 4 shows the inclination dependence with all the
other parameters fixed. The inclination does not affect the
overall amplitude so much, although the derivative of the
cross-mode amplitude becomes zero at 90◦.

Finally, we consider the scenario (r) where multiple BHs
reside in the central region of M 87 and the main SMBH
is forming a binary with a smaller BH. As remarked in
section 1, the center of mass of the binary need not be
located at the galactic center and the binary can have a
much smaller semimajor axis compared with the previous
cases. Because there is no constraint on the orbital elements,
we compute the time derivative of GW amplitude for a

Fig. 4. Inclination dependence of the time derivatives (change of the
gravitational-wave amplitude in 10 years) for r1 = 3 pc, e = 0.8, a1 =
10.0 pc, and m2 = m1.

Fig. 5. Time derivative of GW amplitude for random sets of orbital ele-
ments (semi-major axis, eccentricity, phase, and inclination), fixing the
mass of the smaller BH. The results are shown as a function of the
semi-major axis for m2 = 0.1m1, 0.01m1, and 0.001m1. (Color online)

number of random sets of orbital elements (semimajor axis,
eccentricity, phase, and inclination), fixing the mass of the
smaller BH. The results are shown as a function of the
semimajor axis in figure 5 for m2 = 0.1m1, 0.01m1, and
0.001m1. Aside from m2 and the semimajor axis, the time
derivative of the GW amplitude has a strong dependence
on the eccentricity and increases significantly for e ! 0.8.

5 Detectability of gravitational waves
In this section, let us discuss the detectability of GWs from
a possible SMBH binary at the center of M 87. Nano-Hertz
GWs from SMBH binaries are targets of “pulsar timing
arrays” (Sesana et al. 2008; Hobbs 2011; Lee et al. 2011;
Mingarelli et al. 2013; Sesana 2013; Shannon et al. 2013;
Taylor & Gair 2013; Burke-Spolaor 2015; Janssen et al.
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今後の課題
• 実際に観測されるMSPを用いた制限                                          
→ 現在、論文を執筆中                                                           
- Kumamoto, Yonemaru et al. in prep. 

• レフェリー曰く、                                                                  
背景重力波も四重極パターンが現れる                                        
→ 背景重力波に対する議論、考察 

•                   の重力波に対する感度のシミュレーション、制限 

• 重力波が強いと負のスピンダウン率が出現                                  
- しかし、実際には1個しか無い　→　制限

⌧ 10�13Hz



まとめ
• 超低周波重力波に対する新検出方法                                          
- 超低周波重力波はスピンダウン率　　　　　　　　　　　　　　　　　　　　
の補正として吸収されてしまう。                                              
→ 赤と青それぞれの領域でスピン                                             
ダウン率分布の特徴に違いが生じる。 

• 分布の違いを特徴づける量：歪度                                                                              
→ 2つの領域間の歪度の差をシミュレーション 

• シミュレーションの結果、 
                              の重力波なら検出可能
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our method quantitatively by simulating the spin-down
rate statistics of millisecond pulsars considering future
pulsar surveys by the SKA. Assuming the position of
a GW source and the polarization angle of the GWs,
pulsars are divided into two groups according to their
position in the sky. If the GW is strong enough, the
difference in the spin-down distribution of the two groups
exceeds the statistical fluctuation. This is the signal of a
ultra-low frequency GW.
This paper is organized as follows. In section 2, we de-

scribe the detection principle of a new method for ultra-
low frequency GWs. In section 3, we simulate the sensi-
tivity of this method and represent its results. In section
4, we give a discussion and summary.

2. DETECTION PRINCIPLE

The timing residual due to GWs, the difference be-
tween the actual arrival time of pulses from a pulsar and
the expectation without GWs, is given by

rGW(t) =
∑

A=+,×

FA(Ω̂, p̂)

∫ t

∆hA(t
′, Ω̂)dt′ (1)

where p̂ and Ω̂ are the direction of the pulsar and GW
propagation, respectively. Here ∆hA(t, Ω̂) is the differ-
ence of the metric perturbation between the earth and
pulsar and given by

∆hA(t, Ω̂) = hA(t, Ω̂)− hA(tp, Ω̂) (2)

where tp = t − L/c where L is the distance to the pul-
sar. In the following, we will consider only the first term
(”the earth term”) and neglect the effects of the second
term (”the pulsar term”) as is often done in the study
of PTA. The time evolution of the timing residual re-
flects the wave form of GWs. If the period of GWs is
much longer than the observational time span, however,
the timing residual changes linearly with time. For GWs
which have a constant time-derivative of the amplitude,
Eq. (2) becomes

∆hA(t, Ω̂) = ḣA(Ω̂)t. (3)

Here, FA(Ω̂, p̂) is the antenna beam pattern which is
given by

FA(Ω̂, p̂) =
1

2

p̂ip̂j

1 + Ω̂ · p̂
eAij(Ω̂), (4)

where eAij(A = +,×) is the GW polarization tensor given
by

e+ij(Ω̂)= m̂im̂j − n̂in̂j (5)

e×ij(Ω̂)= m̂in̂j + n̂im̂j , (6)

where m̂ and n̂ are the polarization basis vectors. Substi-
tuting Eq. (1) into Eq. (3), the timing residual induced
by linearly-changing GWs becomes

rGW(t) =
1
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∑

A=+,×

FA(Ω̂, p̂)ḣA(Ω̂)t
2. (7)

On the other hand, the timing residual induced by the
pulsar spin down is given by,

rṗ =
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Fig. 1.— Bias factor α(Ω̂, p̂) in the sky for ḣ+ = 0 s−1 and
ḣ× = 10−18 s−1. The symbol ”+” in the figure represents the
source position.
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Fig. 2.— Histogram of log10 ṗ/p [sec−1] of 148 observed pul-

sars with p < 30 ms. Here pulsars in globular clusters and two
ones with negative and extremely large spin-down rates (ṗ/p =
−10−21.2, 10−11.5 [sec−1]) are not included.

Where, p is the pulse period and ṗ is its time derivative,
or the spin-down rate. As can be seen, both Eq. (7) and
(8) have the same time-dependence. Thus, even if such
GWs exist, they just contribute to the correction of ṗ/p,

ṗ

p
=

ṗ0
p

+ α(Ω̂, p̂), (9)

where ṗ0 is the intrinsic spin-down rate, and α(Ω̂, p̂) is
a bias factor due to ultra-low frequency GWs which is
given by

α(Ω̂, p̂) =
∑

A=+,×

FA(Ω̂, p̂)ḣA(Ω̂). (10)

In principle, we cannot separate the GW effect from the
intrinsic ṗ0/p for a single pulsar. Therefore, such low-
frequency GWs cannot be detected by the conventional
PTA method.
However, it should be noted that the value of the bias

factor, α(Ω̂, p̂), depends on the source position, the GW
polarization angle and the pulsar position, and can be
either positive or negative. In fact, the distribution of

ḣ = 3⇥ 10�19 s�1


