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Fermi 5-year gamma-ray sky

Gamma-ray pulsed emission

Fermi
Gamma-ray
Space Telescope

launched on on June 
11, 2008 at 12:05 pm 
EDT.

GeV bands
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data from ATNF Pulsar catobue v1.47
afrter R.N. Manchester

Intensive radio pulses ( more than 2600 PSRs)
Tb can be 1030K
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X-ray Images of PWNe

1: PSR B0531+21(Crab)、2: PSR B0833-45(Vela)、3: PSRJ0205+6449、
4: PSR J1930+1852、5: PSR B1509-58、6: PSR J1747--22958
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https://www.mpi-hd.mpg.de/hfm/HESS/

PWNe are TeV γ-ray 
persistent sources

10th Anniversary: 
The H.E.S.S. gamma ray sky
September 2012
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Pulsar:
Rotation power
(spin-down power)
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Magnetic rotating neutron star, which is 
10km in size, is an electric power 
generator. As a back reaction of 
emission, the NS spins down. 

https://fermi.gsfc.nasa.gov
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27.1 Emission from the rotation powered pulsar

27.2 Pulsar model

࣓Λ͕ͨͬ࣋ࣗస͍ͯ͠Δ͜ͱʹΑΔൃి (୯ۃ༠ಋ)͕ύϧαʔͷΤωϧΪʔ์ग़ͷݯىͰ͋Γɺ

์ग़ͷ࡞༻ͱͯࣗ͠సݮਰ (spin-down)͢Δɻ࣮ࡍʹύϧεͷ؍ଌ͔Β P = 2π/Ωͱ Ṗ = −2πΩ̇/Ω2

͕Θ͔ΔͷͰ์ࣹͷ࡞༻Ͱ͋ΔճసΤωϧΪʔͷଛࣦ ℑΩΩ͕̇ΒΕΔɻ͋ͱͰݟΔΑ͏ʹ࣓ؾϞʔϝϯ
τ µͷճసମ͕์ग़͢Δి࣓ΤωϧΪʔ͕ҎԼͷΑ͏ʹධՁ͞ΕΔɿ

ℑΩΩ̇ ≈ µ2Ω4

c3
(27.1)

͜Ε͔Βɺதੑࢠͷ࣓ؾϞʔϝϯτ͕ µ =
√

c3ℑΩ̇/Ω3 ͱ ਪఆͰ͖Δɻ

ύϧαʔ࣓ݍؾʹ͓͚ΔཻࢠՃిͷ࣓ํ E∥ʹΑΔͷͱɺ࣓ʹਨํ E⊥ʹΑ

Δͷʹେ͖͚͘ΒΕΔɻ࣓ݍؾϓϥζϚͷ୯Ґମੵʹಇ͘ྗͷόϥϯε

(the inertial term) = ρeE +
j ×B

c
+ (other non-electromagnetic forces) (27.2)

ͱݱΘͤΔͩΖ͏ɻి࣓ྗ͕ѹ͍ͯ͠ΔͷͰɺE = E⊥, E∥ = 0 ͕ୈҰۙࣅͰ͋Γɺ࣓ྗઢిҐ໘

ʹͳΔɻӉཧʹग़ͯ͘Δ΄ͱΜͲͷ໘Ͱ͜ͷۙࣅඇৗʹਖ਼͘͠ɺ͜ͷ่͕ۙࣅΕΔͷඇৗʹಛ

घͳہॴతྖҬͷΈͰ͋Δ (ͨͱ͑ɺ࣓ؾϦίωΫγϣϯαΠτ)ɻ͔͠͠ɺύϧαʔͰ͜ͷࣄ͕ਖ਼

͘͠ͳ͍ɻӡಈํఔ͚ࣜͩΛͯݟE = E⊥ Λ৴͕ͨ͡ɺ͜ͷͱ͖ɺ

ρe =
∇ ·E⊥
4π

(27.3)

ͷۭؒిՙີ͕ଘ͢ࡏΔ͜ͱ͕҉ʹԾఆ͞Ε͍ͯΔɻύϧαʔ࣓ݍؾͰయܕతʹ |∇ · E⊥|/4π ∼
1012cm−3 Ͱ͋Γɺύϧαʔ࣓ݍؾͰ͜ͷఔͷϓϥζϚͷଘࡏΛ҉ͷʹԾఆ͢Δ͜ͱ͘͠ (தੑ

ϓϥζϚͷ͕ۙ͑ࣅͳ͍)ɺϓϥζϚͷڅڙʹ͍ͭͯਅݕʹ౼͠ͳ͚ΕͳΒͳ͍ɻҰ୴ɺཻ͕ࢠՃ

͞Εɺେྔͷిࢠɾཅిࢠର͕ൃੜ͢Ε͜ͷղফ͢Δɻ

ύϧαʔ࣓ݍؾͰ͜ͷࣄΛΘ͔Γ͘͢͢ΔͨΊʹɺத৺ʹ͋Δ߶ମճస͢Δ࣓ؾϞʔϝϯτʹΑ

Δ࣓ʹਨͳ༠ಋిΛ Ec = −(Ω × r) ×B/c (Ϳݺճసిͱڞ) ͱ͓͍ͯɺ͜ΕʹରԠ͢Δۭؒి

ՙີ (Goldreich-Julina charge density) Λ ρgj = ∇ ·Ec/4πͱॻ͍ͯɺPoission equationΛ

rev-Poisson1; ∇ ·E′ = 4π(ρe − ρgj) (27.4)

～1012 G
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Correlation between 
X-ray Luminosity L x
and 
the spin-down Luminosity 
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As for the soft band the enors in Z, were fully taken into account and were used
to weight the data points in the linear fit. By reason of a smaller contribution from
the thermal spectral components above -2keV the scatter in the data points below
-103s ergs-l seems larger. The result from a linear fit, however, is found to be
fully in agreement with the earlier results based on Einstein, ASCA and ROSAT
data [134,139,1421.
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The Astrophysical Journal Supplement Series, 208:17 (59pp), 2013 October Abdo et al.

Figure 9. Gamma-ray luminosity Lγ = 4πfΩd2G100 in the 0.1 to 100 GeV energy band vs. spindown power Ė. The vertical error bars from the statistical uncertainty
on the energy flux G100 are colored in the online journal. The vertical error bars due to the distance uncertainties are black, and generally larger. Doppler corrections
(Section 4.3) have been applied to MSPs with known proper motions, leading to visible horizontal error bars in some cases. The upper diagonal line indicates 100%
conversion of spindown power into gamma-ray flux: for pulsars above this line, the distance d may be smaller, and/or the assumed beam correction fΩ ≡ 1 is wrong.
The lower diagonal line indicates the heuristic luminosity Lh

γ =
√

1033Ė erg s−1, to guide the eye. The upper of the two Crab points, at far right, includes the X-ray
energy flux (see Section 9.1). The markers are the same as in Figure 1.
(A color version of this figure is available in the online journal.)

Figure 10. Gamma-ray efficiency η = Lγ /Ė vs. spindown power Ė. The error bars are as in Figure 9. The markers and the side histogram use the same color coding
as in Figure 1.
(A color version of this figure is available in the online journal.)
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The Second Fermi Large Area Telescope 
Catalog of Gamma-ray Pulsars (The Fermi-
LAT collaboration 2013) apjs, 208,2 

Lrot = I Ω (dΩ/dt) ～μ2Ω4/c3

I=μΩ2/c
Lγ=IV1

lo
g 

L 
x

log Lrot
log Lrot
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g 

L 
γ

Becker, W. 2009, Astrophysics
and Space Science Library, 357, 91

L γ ∝ L rot
1/2 L x ∝ L rot

primary particles

secondary particles?
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Lrad – Lrot correlation: no

data from ATNF pulsar catalogue 400MHz+1400MHz



Unipolar Inductor
1821 M. Faraday



Note ∂B /∂t =0 

Unipolar inductor:

rotating magnet 
produces emf





ì
Model of the RPP

Simple understanding and standard model

current

magnetic fieldBy making a closed 
current circuit, one 
can extract energy, 
lighting the lamp.

15

As a back reaction, electromagnetic breaking on the 
magnet causes spin-down: Thus rotational energy of 
the neutron star

is  extracted.
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Particle
acceleration
mechanism
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ℑΩΩ̇ ≈ µ2Ω4

c3
(27.1)

͜Ε͔Βɺதੑࢠͷ࣓ؾϞʔϝϯτ͕ µ =
√

c3ℑΩ̇/Ω3 ͱ ਪఆͰ͖Δɻ
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Δͷʹେ͖͚͘ΒΕΔɻ࣓ݍؾϓϥζϚͷ୯Ґମੵʹಇ͘ྗͷόϥϯε

(the inertial term) = ρeE +
j ×B

c
+ (other non-electromagnetic forces) (27.2)
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͘͠ͳ͍ɻӡಈํఔ͚ࣜͩΛͯݟE = E⊥ Λ৴͕ͨ͡ɺ͜ͷͱ͖ɺ

ρe =
∇ ·E⊥
4π

(27.3)
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Δ࣓ʹਨͳ༠ಋిΛ Ec = −(Ω × r) ×B/c (Ϳݺճసిͱڞ) ͱ͓͍ͯɺ͜ΕʹରԠ͢Δۭؒి

ՙີ (Goldreich-Julina charge density) Λ ρgj = ∇ ·Ec/4πͱॻ͍ͯɺPoission equationΛ

rev-Poisson1; ∇ ·E′ = 4π(ρe − ρgj) (27.4)

driven

driven
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(inertia) = ρeE +
j ×B
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∇ ·E⊥
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(27.3)

ͷۭؒిՙີ͕ଘ͢ࡏΔ͜ͱ͕҉ʹԾఆ͞Ε͍ͯΔɻύϧαʔ࣓ݍؾͰయܕతʹ |∇ · E⊥|/4π ∼
1012cm−3 Ͱ͋Γɺύϧαʔ࣓ݍؾͰ͜ͷఔͷϓϥζϚͷଘࡏΛ҉ͷʹԾఆ͢Δ͜ͱ͘͠ (தੑ

ϓϥζϚͷ͕ۙ͑ࣅͳ͍)ɺϓϥζϚͷڅڙʹ͍ͭͯਅݕʹ౼͠ͳ͚ΕͳΒͳ͍ɻҰ୴ɺཻ͕ࢠՃ

͞Εɺେྔͷిࢠɾཅిࢠର͕ൃੜ͢Ε͜ͷղফ͢Δɻ

ύϧαʔ࣓ݍؾͰ͜ͷࣄΛΘ͔Γ͘͢͢ΔͨΊʹɺத৺ʹ͋Δ߶ମճస͢Δ࣓ؾϞʔϝϯτʹΑ

Δ࣓ʹਨͳ༠ಋిΛ Ec = −(Ω × r) ×B/c (Ϳݺճసిͱڞ) ͱ͓͍ͯɺ͜ΕʹରԠ͢Δۭؒి

ՙີ (Goldreich-Julina charge density) Λ ρgj = ∇ ·Ec/4πͱॻ͍ͯɺPoission equationΛ

rev-Poisson1; ∇ ·E′ = 4π(ρe − ρgj) (27.4)

Equation of motion: for a plasma in the pulsar 
magnetosphere, the force balance on unit volume 
may be represented by

Because the electromagnetic force dominates, 
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(magnetic field lines are iso-potentials)

E⊥
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＋＋

ーー
This is almost perfect for most of 
astrophysical plasmas, except for 
pulsars  because …

～1012 particles/cm3

(E⊥ x B causes rotation with the star)
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Look at Poisson equation and
pay attention to how plasma is supplied
to the magnetosphere



19

Prescription

415

ୈ27ষ A review

date of revision

2017.Dec-2018.Jan

27.1 Emission from the rotation powered pulsar

27.2 Pulsar model

࣓Λ͕ͨͬ࣋ࣗస͍ͯ͠Δ͜ͱʹΑΔൃి (୯ۃ༠ಋ)͕ύϧαʔͷΤωϧΪʔ์ग़ͷݯىͰ͋Γɺ

์ग़ͷ࡞༻ͱͯࣗ͠సݮਰ (spin-down)͢Δɻ࣮ࡍʹύϧεͷ؍ଌ͔Β P = 2π/Ωͱ Ṗ = −2πΩ̇/Ω2
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define corotation electric field

Goldreich-Julian charge density
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τ µͷճసମ͕์ग़͢Δి࣓ΤωϧΪʔ͕ҎԼͷΑ͏ʹධՁ͞ΕΔɿ

ℑΩΩ̇ ≈ µ2Ω4

c3
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√
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‘’ If the space charge density differs from 
the GJ density, then E// apperas.’’



20

If

27.3. VACUUM MODEL & ELECTROSPHERE ୈ 27. A REVIEW

ͱॻ͖͑ΔɻE′ = E −Ec ిͷڞճసి͔ΒͷζϨͰ E∥ ΛؚΜͰ͍ΔɻඇڞճసిͱΑΕ

Δɻ্ͷࣜɺʮਅిՙີ͕ GJີ͔ΒͣΕΔͱɺԊ࣓ྗઢి͕ൃੜ͢ΔʯͱಡΊΔɻ

ҰํɺE∥ = 0Ͱ͋ΕɺϓϥζϚ

vD = c
Ec ×B

B2
= Ω× r = Ωr sin θ (27.5)

Ͱڞճస͠Α͏ͱ͢ΔͷͰɺ

RL = c/Ω (27.6)

Ͱޫʹୡ͢Δɻ͜ͷݶքΛ light cylinder ͱΑͼɺ͜͜Ͱ v → cͳΒϩʔϨϯπҼ͕ࢠඇৗʹେ͖͘ͳ

ΓɺϓϥζϚੑ׳ γm͕૿େͯ͠ɺి࣓ྗ༏ͷաఔ่յ͢Δɻԕ৺ྗՃͱ͍͏ݱ͕ظ͞ΕΔɻ

27.3 Vacuum model & Electrosphere

disc sheare ͷͨΊʹ diocotron instability ͕ equatorical disc ʹൃੜɻඇৗʹऑ͍ outflow Λੜ͡Δɻlc

ۙ͘Ͱ૬ରతޮՌͰ diocotron instablity ੍͞ΕΔɻ[Cerutti & Philippov(2017)]

Electrosphere Ͱ gap ͕ଘ͠ࡏɺgap  pair creation ʹରͯ͠ෆ҆ఆͰ͋Δɻpair creation Δ·͕࢝

ͱ outger gap ͞ΕΔ͜ͱ͕ఏҊ͞Εͨɻ[Wadaܗ͕ & Shibata(2007)]

27.4 The force-free model

gaps ͰϖΞੜ͕Ͱ͖Δͱ plasma Ͱຬͨ͞ΕͨͱۙࣅͰ͖Δ࣓ܗ͕ݍؾ͞ΕΔͩΖ͏ɻforce-free

modelڀݚରͱͯ͠༗ޮͱࢥΘΕΔɻ

ρeE +
1

c
j ×B = 0 (27.7)

27.4.1 Axisymmetirc steady model

27.4.1.1 Split mono pole model

ղੳղ͕͋Δɻ

split monopole solution ࣼΊճసͰ͋Μ·ΓมΘΜͳ͍ɻ[Bogovalov(1999)]

27.4.1.2 Axisymmetirc steady model with a dipole source field

close-open ·ͳ͍ɻେ͑ݴͰ͖ΔɻɿϓϥζϚೖ͍ͬͯͳ͍ͷͰՃʹ͍ͭͯݱ࠶͕ܗຊجͷߏ

͔ͳߏਤ রɻࢀ??

axisymmetric force-free ղͷಛͱ:

• ೋͭͷྖҬɺopen / closed magnetic flux regions ͱബ͍ current sheet ͔Βߏ͞Ε͍ͯΔɻa Y-

shaped current sheet ɺڥք (separatrix)ͱಓʹ͋Δ equatorial magnetic netural sheet (MNS)

͔ΒͳΔɻseparatrix ͱ neutral sheet ͷଓΛ Y-point ͱݺͿɻ

416

(plasma is sufficiently supplied),

27.3. VACUUM MODEL & ELECTROSPHERE ୈ 27. A REVIEW

ͱॻ͖͑ΔɻE′ = E −Ec ిͷڞճసి͔ΒͷζϨͰ E∥ ΛؚΜͰ͍ΔɻඇڞճసిͱΑΕ

Δɻ্ͷࣜɺʮਅిՙີ͕ GJີ͔ΒͣΕΔͱɺԊ࣓ྗઢి͕ൃੜ͢ΔʯͱಡΊΔɻ

ҰํɺE∥ = 0Ͱ͋ΕɺϓϥζϚ

vD = c
Ec ×B

B2
= Ω× r = Ωr sin θ (27.5)

Ͱڞճస͠Α͏ͱ͢ΔͷͰɺ

RL = c/Ω (27.6)

Ͱޫʹୡ͢Δɻ͜ͷݶքΛ light cylinder ͱΑͼɺ͜͜Ͱ v → cͳΒϩʔϨϯπҼ͕ࢠඇৗʹେ͖͘ͳ

ΓɺϓϥζϚੑ׳ γm͕૿େͯ͠ɺి࣓ྗ༏ͷաఔ่յ͢Δɻԕ৺ྗՃͱ͍͏ݱ͕ظ͞ΕΔɻ

27.3 Vacuum model & Electrosphere

disc sheare ͷͨΊʹ diocotron instability ͕ equatorical disc ʹൃੜɻඇৗʹऑ͍ outflow Λੜ͡Δɻlc

ۙ͘Ͱ૬ରతޮՌͰ diocotron instablity ੍͞ΕΔɻ[Cerutti & Philippov(2017)]

Electrosphere Ͱ gap ͕ଘ͠ࡏɺgap  pair creation ʹରͯ͠ෆ҆ఆͰ͋Δɻpair creation Δ·͕࢝

ͱ outger gap ͞ΕΔ͜ͱ͕ఏҊ͞Εͨɻ[Wadaܗ͕ & Shibata(2007)]

27.4 The force-free model

gaps ͰϖΞੜ͕Ͱ͖Δͱ plasma Ͱຬͨ͞ΕͨͱۙࣅͰ͖Δ࣓ܗ͕ݍؾ͞ΕΔͩΖ͏ɻforce-free

modelڀݚରͱͯ͠༗ޮͱࢥΘΕΔɻ

ρeE +
1

c
j ×B = 0 (27.7)

27.4.1 Axisymmetirc steady model

27.4.1.1 Split mono pole model

ղੳղ͕͋Δɻ

split monopole solution ࣼΊճసͰ͋Μ·ΓมΘΜͳ͍ɻ[Bogovalov(1999)]

27.4.1.2 Axisymmetirc steady model with a dipole source field

close-open ·ͳ͍ɻେ͑ݴͰ͖ΔɻɿϓϥζϚೖ͍ͬͯͳ͍ͷͰՃʹ͍ͭͯݱ࠶͕ܗຊجͷߏ

͔ͳߏਤ রɻࢀ??

axisymmetric force-free ղͷಛͱ:

• ೋͭͷྖҬɺopen / closed magnetic flux regions ͱബ͍ current sheet ͔Βߏ͞Ε͍ͯΔɻa Y-

shaped current sheet ɺڥք (separatrix)ͱಓʹ͋Δ equatorial magnetic netural sheet (MNS)

͔ΒͳΔɻseparatrix ͱ neutral sheet ͷଓΛ Y-point ͱݺͿɻ

416

27.3. VACUUM MODEL & ELECTROSPHERE ୈ 27. A REVIEW

ͱॻ͖͑ΔɻE′ = E −Ec ిͷڞճసి͔ΒͷζϨͰ E∥ ΛؚΜͰ͍ΔɻඇڞճసిͱΑΕ

Δɻ্ͷࣜɺʮਅిՙີ͕ GJີ͔ΒͣΕΔͱɺԊ࣓ྗઢి͕ൃੜ͢ΔʯͱಡΊΔɻ

ҰํɺE∥ = 0Ͱ͋ΕɺϓϥζϚ

vD = c
Ec ×B

B2
= Ω× r = Ωr sin θ (27.5)

Ͱڞճస͠Α͏ͱ͢ΔͷͰɺ

RL = c/Ω (27.6)

Ͱޫʹୡ͢Δɻ͜ͷݶքΛ light cylinder ͱΑͼɺ͜͜Ͱ v → cͳΒϩʔϨϯπҼ͕ࢠඇৗʹେ͖͘ͳ

ΓɺϓϥζϚੑ׳ γm͕૿େͯ͠ɺి࣓ྗ༏ͷաఔ่յ͢Δɻԕ৺ྗՃͱ͍͏ݱ͕ظ͞ΕΔɻ

27.3 Vacuum model & Electrosphere

disc sheare ͷͨΊʹ diocotron instability ͕ equatorical disc ʹൃੜɻඇৗʹऑ͍ outflow Λੜ͡Δɻlc

ۙ͘Ͱ૬ରతޮՌͰ diocotron instablity ੍͞ΕΔɻ[Cerutti & Philippov(2017)]

Electrosphere Ͱ gap ͕ଘ͠ࡏɺgap  pair creation ʹରͯ͠ෆ҆ఆͰ͋Δɻpair creation Δ·͕࢝

ͱ outger gap ͞ΕΔ͜ͱ͕ఏҊ͞Εͨɻ[Wadaܗ͕ & Shibata(2007)]

27.4 The force-free model

gaps ͰϖΞੜ͕Ͱ͖Δͱ plasma Ͱຬͨ͞ΕͨͱۙࣅͰ͖Δ࣓ܗ͕ݍؾ͞ΕΔͩΖ͏ɻforce-free

modelڀݚରͱͯ͠༗ޮͱࢥΘΕΔɻ

ρeE +
1

c
j ×B = 0 (27.7)

27.4.1 Axisymmetirc steady model

27.4.1.1 Split mono pole model

ղੳղ͕͋Δɻ

split monopole solution ࣼΊճసͰ͋Μ·ΓมΘΜͳ͍ɻ[Bogovalov(1999)]

27.4.1.2 Axisymmetirc steady model with a dipole source field

close-open ·ͳ͍ɻେ͑ݴͰ͖ΔɻɿϓϥζϚೖ͍ͬͯͳ͍ͷͰՃʹ͍ͭͯݱ࠶͕ܗຊجͷߏ

͔ͳߏਤ রɻࢀ??

axisymmetric force-free ղͷಛͱ:

• ೋͭͷྖҬɺopen / closed magnetic flux regions ͱബ͍ current sheet ͔Βߏ͞Ε͍ͯΔɻa Y-

shaped current sheet ɺڥք (separatrix)ͱಓʹ͋Δ equatorial magnetic netural sheet (MNS)

͔ΒͳΔɻseparatrix ͱ neutral sheet ͷଓΛ Y-point ͱݺͿɻ

416

27.3. VACUUM MODEL & ELECTROSPHERE ୈ 27. A REVIEW

ͱॻ͖͑ΔɻE′ = E −Ec ిͷڞճసి͔ΒͷζϨͰ E∥ ΛؚΜͰ͍ΔɻඇڞճసిͱΑΕ

Δɻ্ͷࣜɺʮਅిՙີ͕ GJີ͔ΒͣΕΔͱɺԊ࣓ྗઢి͕ൃੜ͢ΔʯͱಡΊΔɻ

ҰํɺE∥ = 0Ͱ͋ΕɺϓϥζϚ

vD = c
Ec ×B

B2
= Ω× r = Ωr sin θ (27.5)

Ͱڞճస͠Α͏ͱ͢ΔͷͰɺ

RL = c/Ω (27.6)

Ͱޫʹୡ͢Δɻ͜ͷݶքΛ light cylinder ͱΑͼɺ͜͜Ͱ v → cͳΒϩʔϨϯπҼ͕ࢠඇৗʹେ͖͘ͳ

ΓɺϓϥζϚੑ׳ γm͕૿େͯ͠ɺి࣓ྗ༏ͷաఔ่յ͢Δɻԕ৺ྗՃͱ͍͏ݱ͕ظ͞ΕΔɻ

27.3 Vacuum model & Electrosphere

disc sheare ͷͨΊʹ diocotron instability ͕ equatorical disc ʹൃੜɻඇৗʹऑ͍ outflow Λੜ͡Δɻlc

ۙ͘Ͱ૬ରతޮՌͰ diocotron instablity ੍͞ΕΔɻ[Cerutti & Philippov(2017)]

Electrosphere Ͱ gap ͕ଘ͠ࡏɺgap  pair creation ʹରͯ͠ෆ҆ఆͰ͋Δɻpair creation Δ·͕࢝

ͱ outger gap ͞ΕΔ͜ͱ͕ఏҊ͞Εͨɻ[Wadaܗ͕ & Shibata(2007)]

27.4 The force-free model

gaps ͰϖΞੜ͕Ͱ͖Δͱ plasma Ͱຬͨ͞ΕͨͱۙࣅͰ͖Δ࣓ܗ͕ݍؾ͞ΕΔͩΖ͏ɻforce-free

modelڀݚରͱͯ͠༗ޮͱࢥΘΕΔɻ

ρeE +
1

c
j ×B = 0 (27.7)

27.4.1 Axisymmetirc steady model

27.4.1.1 Split mono pole model

ղੳղ͕͋Δɻ

split monopole solution ࣼΊճసͰ͋Μ·ΓมΘΜͳ͍ɻ[Bogovalov(1999)]

27.4.1.2 Axisymmetirc steady model with a dipole source field

close-open ·ͳ͍ɻେ͑ݴͰ͖ΔɻɿϓϥζϚೖ͍ͬͯͳ͍ͷͰՃʹ͍ͭͯݱ࠶͕ܗຊجͷߏ

͔ͳߏਤ রɻࢀ??

axisymmetric force-free ղͷಛͱ:

• ೋͭͷྖҬɺopen / closed magnetic flux regions ͱബ͍ current sheet ͔Βߏ͞Ε͍ͯΔɻa Y-

shaped current sheet ɺڥք (separatrix)ͱಓʹ͋Δ equatorial magnetic netural sheet (MNS)

͔ΒͳΔɻseparatrix ͱ neutral sheet ͷଓΛ Y-point ͱݺͿɻ

416

light cylinder is a singularity

27.3. VACUUM MODEL & ELECTROSPHERE ୈ 27. A REVIEW

ͱॻ͖͑ΔɻE′ = E −Ec ిͷڞճసి͔ΒͷζϨͰ E∥ ΛؚΜͰ͍ΔɻඇڞճసిͱΑΕ

Δɻ্ͷࣜɺʮਅిՙີ͕ GJີ͔ΒͣΕΔͱɺԊ࣓ྗઢి͕ൃੜ͢ΔʯͱಡΊΔɻ

ҰํɺE∥ = 0Ͱ͋ΕɺϓϥζϚ

vD = c
Ec ×B

B2
= Ω× r = Ωr sin θ (27.5)

Ͱڞճస͠Α͏ͱ͢ΔͷͰɺ

RL = c/Ω (27.6)

Ͱޫʹୡ͢Δɻ͜ͷݶքΛ light cylinder ͱΑͼɺ͜͜Ͱ v → cͳΒϩʔϨϯπҼ͕ࢠඇৗʹେ͖͘ͳ

ΓɺϓϥζϚੑ׳ γm͕૿େͯ͠ɺి࣓ྗ༏ͷաఔ่յ͢Δɻԕ৺ྗՃͱ͍͏ݱ͕ظ͞ΕΔɻ

27.3 Vacuum model & Electrosphere

disc sheare ͷͨΊʹ diocotron instability ͕ equatorical disc ʹൃੜɻඇৗʹऑ͍ outflow Λੜ͡Δɻlc

ۙ͘Ͱ૬ରతޮՌͰ diocotron instablity ੍͞ΕΔɻ[Cerutti & Philippov(2017)]

Electrosphere Ͱ gap ͕ଘ͠ࡏɺgap  pair creation ʹରͯ͠ෆ҆ఆͰ͋Δɻpair creation Δ·͕࢝

ͱ outger gap ͞ΕΔ͜ͱ͕ఏҊ͞Εͨɻ[Wadaܗ͕ & Shibata(2007)]

27.4 The force-free model

gaps ͰϖΞੜ͕Ͱ͖Δͱ plasma Ͱຬͨ͞ΕͨͱۙࣅͰ͖Δ࣓ܗ͕ݍؾ͞ΕΔͩΖ͏ɻforce-free

modelڀݚରͱͯ͠༗ޮͱࢥΘΕΔɻ

ρeE +
1

c
j ×B = 0 (27.7)

27.4.1 Axisymmetirc steady model

27.4.1.1 Split mono pole model

ղੳղ͕͋Δɻ

split monopole solution ࣼΊճసͰ͋Μ·ΓมΘΜͳ͍ɻ[Bogovalov(1999)]

27.4.1.2 Axisymmetirc steady model with a dipole source field

close-open ·ͳ͍ɻେ͑ݴͰ͖ΔɻɿϓϥζϚೖ͍ͬͯͳ͍ͷͰՃʹ͍ͭͯݱ࠶͕ܗຊجͷߏ

͔ͳߏਤ রɻࢀ??

axisymmetric force-free ղͷಛͱ:

• ೋͭͷྖҬɺopen / closed magnetic flux regions ͱബ͍ current sheet ͔Βߏ͞Ε͍ͯΔɻa Y-

shaped current sheet ɺڥք (separatrix)ͱಓʹ͋Δ equatorial magnetic netural sheet (MNS)

͔ΒͳΔɻseparatrix ͱ neutral sheet ͷଓΛ Y-point ͱݺͿɻ
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grows so large as centrifugal force drives 
an out flow

E⊥ drives this singularity
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current understanding
of the pulsar magnetosphere
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ìstart 
with surrounding

vacuum

Electrosphere



electrons

positrons

star

Light 
cylinder

For the first time, the particle simulation is applied for this 
situation by Krause-Polstorf and Michel (1985).

Gap

Field-aligned Electric field

Gap

These pictures are reproduced by our code.
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pair creation
gamma-ray + B è e+ + e-

gamma-ray + X-ray  è e+ + e-

accelerated particles emit curvature gamma-rays
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Outer Gap



lig
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outer gap
Pairs are 
continuously 
produced.

Pairs are 
immediately 
separated by the 
field-aligned 
electric field.



E// map

Because we have plasma sources, E// is screened out everywhere, 
except for the outer gap where E// is just above Ec: necessary 
minimum for pair creation.



Dead zones along 
“current-neutral zone” is 
found.  PC,SG locate 
above it and OG below it.

The outer gap is 
sandwiched by two dead 
zones. Therefore, the  
boundary conditions used 
previously in the outer gap 
is correct.

after  Yuki, S., Shibata, S., 2012, PASJ, 
64, 43
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force-free model

Electrodynamics of pulsar magnetospheres 7

The equilibrium electrosphere model is however incomplete, because it
turns out unstable to non-axisymmetric perturbations (Pétri et al. 2002a;
Spitkovsky and Arons 2002). The magnetosphere rotates with the drift veloc-
ity E⇥B/B

2, and the electrosphere solution implies a strong velocity shear.
This causes the diocotron instability of the torus, an analog of the Kelvin-
Helmholtz instability in neutral fluids. This instability is captured only by 3D
simulations as it grows from non-axisymmetric modes. It induces an expansion
of the torus, and can even produce an outflow of charge through the light cylin-
der. However, this outflow is too weak to give a significant spindown power.
Furthermore, Pétri (2007) showed that the diocotron instability is suppressed
by relativistic e↵ects that become important near the light cylinder.

In summary, the electrosphere formed by particles lifted from the surface
can hardly explain the spindown and the magnetospheric activity of pulsars.
The model is, however, useful for old inactive neutron stars.

4 The force-free magnetosphere: The plasma-filled solution

Observations of pulsar wind nebulae indicate that the wind is heavily loaded
with e

± plasma, which must be created in the pulsar magnetosphere (e.g.,
Kirk et al. 2009). Creation of e± pairs is also expected theoretically, due to
strong electric fields that must develop in plasma-starved regions — so-called
“gaps.” For instance, the electrosphere solution has a gap between the dome
and the torus, and a seed electron placed in the gap will be accelerated to
enormous Lorentz factors. The electron is accelerated by Ek along the curved
field lines and emits high-energy photons (curvature radiation) which convert
to e

± pairs in the strong magnetic field (Erber 1966; Harding and Lai 2006).
This process ignites an electromagnetic cascade of gamma rays and pairs until
the density of the plasma is high enough to screen the accelerating electric
field, so that E ·B = 0 becomes nearly satisfied.

Although the existence of gaps is required to fill the magnetosphere with
pair plasma, as a first approximation it makes sense to study “force-free”
magnetospheres with E·B ⇡ 0. This model assumes that small deviations from
the screening condition are su�cient to fill the magnetosphere with plasma.
The model also assumes that the inertial mass density of the plasma is much
smaller than B

2

/8⇡c2. This limit is called “force-free electrodynamics” (FFE).
It satisfies the equation,

⇢E+
J⇥B

c

= 0, (8)

where ⇢ and J are the charge and current densities. The FFE describes the be-
havior of the electromagnetic field, however does not provide any information
about the plasma creation and dynamics, except that it sustains the electric
current J and charge density ⇢ = r ·E/4⇡ demanded by the electromagnetic
field.
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FIG. 3.ÈFinal numerical solution for the structure of the axisymmetric
force-free magnetosphere of an aligned rotating magnetic dipole. We used
a grid of 30 ] 30 points inside and another 30 ] 30 points outside the light
cylinder. Thin lines represent Ñux surfaces in intervals of with0.1(pc ,( \ 0 along the axis. A small amount of return current Ñows between the
dashed Ðeld line and the thick line at which( \ 1.08(pc (open \ 1.36(pc ,determines the boundary between closed and open Ðeld lines, and where
the bulk of the return current Ñows. The null line, along which iso

e
\ 0,

shown dotted. The solution asymptotically approaches the dash-dotted
lines obtained through the integration of eq. (15).

outer (the bulk of the return1.08(pc \ ( \ 1.36(pccurrent obviously Ñows along the boundary between open
and closed lines, and along the equator, i.e., the thick line in
Fig. 3). This is very interesting in view of the fact that the
equivalent monopole current distribution comes close to
generating a continuous solution, although the physical
behavior of the inside and outside solutions di†er near the
light cylinder (Fig. 1c ; see Michel 1982). We would like to
emphasize that several trials of this procedure with di†erent
initial current distributions have all converged to the same
Ðnal distribution shown in Figure 4. This suggests that

there may in fact exist a unique poloidal electric current
distribution consistent with the assumptions of our treatment.

We would like to give particular emphasis to a subtle
point in our numerical treatment of the interface between
the open and closed Ðeld lines within the light cylinder. The
numerical relaxation procedure determines AA@((), and
A(() is obtained by integrating AA@ from ( \ 0 to (open.
This implies that there is no a priori guarantee that A((open)is equal to zero, and in fact it is not. The reader can con-
vince himself/herself that, because of north-south symmetry,
this implies that a return current sheet equal to [ A((open)Ñows along the equator and along the interface between
open and closed Ðeld lines. Since no poloidal electric
current can Ñow inside the closed domain, there is an
unavoidable discontinuity in across the interface, andBÕthis can only be balanced by a similar discontinuity in B

p
!

This e†ect is numerically entirely missed if one naively con-
siders the expression for AA@ as given in Figure 4, where
AA@ ] 0 for since one will then be missing the( ] (open,
delta function (not shown in Fig. 4) that corresponds to the
step discontinuity in A (e.g., Michel 1982). A Ðnite-
resolution numerical grid will not discern an inÐnite jump
in A((), and therefore we treat this problem by artiÐcially
transforming the step discontinuity into a smooth
(Gaussian) transition in A over an interval We0.1(open.
note that a similar problem does not arise in the split mono-
pole case, since the current sheet there extends all the way to
the origin, and can be simply treated as an equatorial
boundary.

The null line, i.e., the line with zero GJ space charge, is
shown dotted. The crossings of the null line by open Ðeld
lines have often been suspected to be the regions where
pulsar emission originates (Cheng et al. 1986 ; Romani
1996). We plan to investigate the detailed microphysics of
the gaps that will appear around these regions in a forth-
coming publication (see also ° 6). According to equation (6),
at large distances, the null line asymptotically approaches
the Ðeld line along which AA@ \ 0. Well within( \ 1.08(pcthe light cylinder, the null line is simply given by the locus
of points where the condition X Æ B \ 0 (or equivalently

is satisÐed.B
z
\ 0)
Knowing the poloidal electric current distribution along

the open magnetic Ðeld lines, we can also derive the asymp-
totic structure of our solution at distances x ? 1. One can

FIG. 4.ÈElectric current distribution A \ A(() (solid line) along the open Ðeld lines that allows for the solution presented in Fig. 3. Compare this with the
equivalent monopole (i.e., a monopole with the same amount of open Ðeld lines) electric current distribution (dashed line).A

m
[ \ [RLC~1 ((2 [ (/(open)Although our numerical iteration scheme seems to be relaxing only to this unique distribution, we have no theoretical arguments that this distribution is

indeed unique.

The Axisymmetric force-free Magnetosphere
CKF model 1999

Contopoulos, I., Kazanas, 
D., & Fendt, C. 1999, ¥apj, 
511, 351

8 Benôıt Cerutti, Andrei M. Beloborodov

4.1 Axisymmetric “pulsar equation”

Since the �-derivative vanishes for axisymmetric configurations, the condition
r · B = 0 gives r · B

P

= 0. This condition implies that there is only one
degree of freedom in the poloidal magnetic fieldB

P

= (Br, B✓). It is convenient
to use the so-called “poloidal flux function”  (r, ✓) or  (R, z) in cylindrical
coordinates R, z. It is defined so that 2⇡ equals the magnetic flux through
the circle of radius R = r sin ✓ around the rotation axis at height z = r cos ✓.
The flux function  (R, z) is related to B

P

by

B

P

=
r ⇥ e�

R

. (9)

The poloidal electric current through the same circle, 2⇡I, is related to the
toroidal magnetic field B� according to the Stokes’ theorem,

B� =
I

R

. (10)

The two scalar functions — the flux function  (R, z) and the current function
I(R, z) — completely describe an axisymmetric magnetic field.

In a steady state, it is possible to translate the force-free condition into
the so-called “pulsar equation” for  and I (Scharlemann and Wagoner 1973;
Michel 1973b). This equation reads,

✓
1� R

2

R

2

LC
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2
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2

 

@z

2

◆
�

✓
1 +

R

2

R

2

LC

◆
1

R

@ 

@R

+ I ( )
@I

@ 

= 0. (11)

No analytical solution to the pulsar equation is known for a rotating dipole.
However, an exact solution was found for a rotating monopole (Michel 1973b).
Some features of this solution are shared by the aligned dipole rotator, in
particular in the wind zone beyond the light cylinder. Below we first describe
the monopole solution and then discuss the dipole rotator.

4.2 (Split) monopole: Michel’s solution

Michel’s solution is given by (in spherical coordinates)

B

r

= B?

⇣
r?

r

⌘
2

(12)

B✓ = 0 (13)

B� = �B?

✓
r?

R

LC

◆⇣
r?

r

⌘
sin ✓ (14)

E

r

= 0 (15)

E✓ = B� (16)

E� = 0. (17)
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Fig. 4 Sketch of the ideal force-free magnetosphere of the aligned pulsar. The main elements
are: (i) The closed field line region (grey, and black field lines) lying between the star surface
and the light cylinder. This zone is dead and does not participate to the pulsar activity. (ii)
The open field line region (red and blue field lines) extending beyond the light cylinder.
The open field-line bundle carries the outflowing electric current, Poynting flux and the
relativistic pulsar wind. (iii) The equatorial current sheet (green) between the opposite
magnetic fluxes in the wind zone. It splits at the light cylinder into two separatrix current
sheets that go around the closed zone, between the last open and the first closed field lines.

force-free model (1)

1. structure: open/close region 
+ current sheets

2. why open field?  çcurrent sheet 
çBC

3. BC: dipole at the center
open field at infinity
outward current +inward

current =0 (closed current system)
regular on the light cylinder so that 
the current function is chosen çill 
method?

healthy approximation!!!(?)
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force-free model (2)
healthy approximation!!!(?)

4. separatrix, 
surface charge ç
might disappear in 
dissipative current 
sheet

5.  force-free solution is one parameter family w.r.t. XY. 
As XYèRL, volume of the return current increases, but 
never XY=1 due to plasma inertia.

lc R=RL

GJ positive

GJ negative
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covering a curved surface with flat paper
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covering a curved surface with flat paper

force-free region

break down: current sheet
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Mestel, L., & Shibata, S. 1994, 
mnras, 271, 621

force-free

MHD
(with intertia of material
without dissipation)
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Voltage in open magnetic flux is utilizable: 

27.3. THE FORCE-FREE MODEL ୈ 27. A REVIEW

ਤ 27.1: ࣠ର force-free ͷ֓೦ਤɻݍؾ࣓

• ͳͥɺϓϥζϚͷ͕ੑ׳ͳ͍ͷʹͳ࣓͕ͥ։͚Δ͔ʹ͍ͭͯɺ࣓ʹΑΔ effective mass͕͋Δ

ͱ͍͏ਓ͍Δɻݸਓతʹೲಘ͍ͯ͠ͳ͍ɻcurrent sheet ( force-free͕ഁΕ͍ͯΔྖҬ) ҼΛݪ͕

Ѳ͍ͬͯΔͱ͏ࢥɻ(ͭ·Γɺڥք݅ґଘੑ͕͋Δ)

• ɺԕํͰ։͍࣓ͨɺlc͍ߴಋੑͷؾք݅ɺத৺Ͱࣗస͢ΔμΠϙʔϧ࣓Λͬͨిڥ Ͱ

ղ regular Ͱ͋Δ͜ͱΛ՝͍ͯ͠Δɻ͜͜Ͱɺlc ڞճస͕ޫʹͳΔܘ RL = c/Ωͷԁப

Ͱ͋Δɻlc Ͱ non-sigular ʹ͢ΔͨΊʹɺpoloidal current function

I(Ψ) = Bφ/ϖ (27.2)

ͷࣗ༝Λ͍ͯͬΔ (open field region)ɻ։͍࣓ͨྖҬʹྲྀΕΔిྲྀ͕͖༏Ͱɺిؾత

தੑΛอͭͨΊʹɺ֎͖ͷ compensative current ಋೖͤ͟ΔΛಘͳ͍ɻ

• force-balanceΛຬͨͨ͢Ίʹɺseparatrix ෛʹɺMNSਖ਼ʹͷ໘ిՙΛͨ࣋ͳ͚ΕͳΒͳ͍ɻ

͜ͷྖҬͷཻࢠՃɾՃ (ѹྗ)Λ͑ߟΕ໘ిՙফࣦ͢Δ͔͠Εͳ͍ɻ(ࢼΈޙड़)

• Y-pointͷҐஔϖY (< RL)͕ҟͳΔղͷ family͕ಘΒΕΔɻY-pointͷҐஔ∼ RLͱࢥΘΕΔ͕ɺ

ϖY = RLͩͱͦ͜Ͱ࣓͕ൃ͠ࢄཧతʹड͚ೖΕΒΕͳ͍ɻϖY → RLʹैͬͯɺcompensateive

current ͕ separatrix ΕΔɻ[Timokhin(2006)]ݱ͔ͭͮͯͬ͜͢͠ʹ

• force-free ͔݅Β࣓ྗઢిҐͰಓଆ͕ిߴҐɺ࣠ۃଆ͕ిҐʹͳΔɻ։͍࣓ͨଋʹ͋Δి

Ґ͕ࠩར༻Մͳిѹ

V0 ∼ BLRL = µΩ2/c2 (27.3)

Λ༩͑Δɻγ0 = eV0/mc2 ͳΔɻ͜͜ͰɺBLʹࢠϩʔϨϯπҼߴ࠷͕  lc ۙͷ࣓ڧͰɺµ =

BLR3
L = BdR3

∗/2ͷ࣓ؾϞʔϝϯτͰ͋Δɻ։͍࣓ͨྗઢ͕ Polar cap sizeΛܾΊΔɻμΠϙʔ

ϧͷ࣓ྗઢ sin2 θ/r = const.Ͱۙ͢ࣅΔͱ polar cap ܘ

Rpc ≈
(
R∗
RL

)1/2

R∗ (27.4)
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Open flux determines polar cap size:

force balance determines the current:
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Rotation power is thus determined as
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force-free model (3)
healthy approximation!!!(?)
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27.1 Emission from the rotation powered pulsar

27.2 Vacuum model & Electrosphere

disc sheare ͷͨΊʹ diocotron instability ͕ equatorical disc ʹൃੜɻඇৗʹऑ͍ outflow Λੜ͡Δɻlc

ۙ͘Ͱ૬ରతޮՌͰ diocotron instablity ੍͞ΕΔɻ[Cerutti & Philippov(2017)]

Electrosphere Ͱ gap ͕ଘ͠ࡏɺgap  pair creation ʹରͯ͠ෆ҆ఆͰ͋Δɻpair creation Δ·͕࢝

ͱ outger gap ͞ΕΔ͜ͱ͕ఏҊ͞Εͨɻ[Wadaܗ͕ & Shibata(2007)]

27.3 The force-free model

gaps ͰϖΞੜ͕Ͱ͖Δͱ plasma Ͱຬͨ͞ΕͨͱۙࣅͰ͖Δ࣓ܗ͕ݍؾ͞ΕΔͩΖ͏ɻforce-free

modelڀݚରͱͯ͠༗ޮͱࢥΘΕΔɻ

ρeE +
1

c
j ×B = 0 (27.1)

27.3.1 Axisymmetirc steady model

27.3.1.1 Split mono pole model

ղੳղ͕͋Δɻ

split monopole solution ࣼΊճసͰ͋Μ·ΓมΘΜͳ͍ɻ[Bogovalov(1999)]

27.3.1.2 Axisymmetirc steady model with a dipole source field

close-open ·ͳ͍ɻେ͑ݴͰ͖ΔɻɿϓϥζϚೖ͍ͬͯͳ͍ͷͰՃʹ͍ͭͯݱ࠶͕ܗຊجͷߏ

͔ͳߏਤ রɻࢀ??

axisymmetric force-free ղͷಛͱ:

• ೋͭͷྖҬɺopen / closed magnetic flux regions ͱബ͍ current sheet ͔Βߏ͞Ε͍ͯΔɻa Y-

shaped current sheet ɺڥք (separatrix)ͱಓʹ͋Δ equatorial magnetic netural sheet (MNS)

͔ΒͳΔɻseparatrix ͱ neutral sheet ͷଓΛ Y-point ͱݺͿɻ
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current sheets are formed, but numerically dissipates.

time-dependent force-free simulation for oblique 
rotators
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Fig. 5 Snapshots of time-dependent force-free simulations of the aligned (left) and oblique
(right) rotators (from Spitkovsky 2006). The oblique rotator magnetosphere is shown in the
⌦�µ plane; the inclination angle is � = 60o. Solid lines represent magnetic field lines, and
color shows the strength of the magnetic field component perpendicular to the plane of the
figure (the toroidal field in the aligned rotator case).

Using ⇢ = r ·E/4⇡ and substituting Equation (25) into the Maxwell equation
@E/@t = r ⇥ B � (4⇡/c)J one can express @E/@t in terms of E, B, and
their spatial derivatives. Together with @B/@t = �cr⇥E, this gives a closed
dynamical system of field equations that can be evolved in time. For example,
one can start with a non-rotating star with a vacuum dipole magnetosphere,
then spin it up to a desired ⌦, and let it relax to the quasi-steady state. For the
aligned rotator, these simulations reproduced the steady-state solution with
the Y-point located close to the light cylinder.

Three-dimensional time dependent simulations were then performed for the
oblique rotator (right panel in Figure 5, Spitkovsky 2006; Kalapotharakos and
Contopoulos 2009; Kalapotharakos et al. 2012; Pétri 2012). These simulations
showed how the spindown power depends on the angle � between ⌦ and µ
(Figure 6). The result is well approximated by a simple formula proposed by
Spitkovsky (2006),

L ⇡ µ

2

⌦

4

c

3

�
1 + sin2 �

�
. (26)

In contrast to the oblique split monopole, the dipole spindown power depends
on �. The term proportional to sin2 � is similar to the vacuum model, except
for a di↵erent numerical prefactor (1 instead of 2/3). Note also that L does
not vanish in the aligned case � = 0. The origin of the variation L(�) was
discussed by Tchekhovskoy et al. (2016). Part of it comes from the increasing
open magnetic flux  

pc

(�) (explaining 40% of the increase in L), and the
remaining part is caused by the increasing concentration of the open magnetic
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27.4. NON FORE-FREE MODEL; TOWARD A REALISTIC

MAGNETOSPHERE

Ͱ͋Δɻemfݯىͷਨిͷൃిۭ͕ؒࢄՙີ ρe∇ ·E⊥/4πΛͨΒ͢ɻforce-free Ͱɺిࣅۙ

ྗؾ ρeE⊥ ͱ࣓ྗؾ jp×Bp͕όϥϯε͢ΔΑ͏ʹ jp ∼ cBLRL͕ൃੜ͍ͯ͠Δɻ͜ΕɺBφ ∼ BL

Λ͍ͯͬ࡞ΔɻయܕతͳϙϩΠμϧͳશిྲྀ I0 ∼ R2
Ljp = µΩ2/c ʹͳΔɻΑͬͯγεςϜͷయܕ

తͳύϫʔɺ

L ≈ µ2Ω4

c3
(27.5)

ʹͳΔɻ͜ΕɺPoyinting vector ͷେ͖͕͞ cB2
L/4πͰ͋Δ͜ͱ͔ΒΘ͔Δɻ

27.3.2 Time-dependent force-free simulation

ఆৗղͷ֬ೝͱࣼΊճసͷٞ Time-dependent force-free simulation ʹΑͬͯߦΘΕͨɻj ʹ͍ͭͯ

ղ͍ͯ

j = cρe

(
E ×B

B2

)
+

c

4π

B ·∇×B −E ·∇×E

B2
B (27.6)

͕ಘΒΕɺρe = ∇ ·E/4π͕͋ΔͷͰɺ͜ΕΒΛ Maxwell eq.ʹೖ͢Δͱɺൃలํఔࣜ

1

c

∂E

∂t
= ∇×B − 4π

c
j (27.7)

1

c

∂B

∂t
= −∇×E (27.8)

Λతʹղ͘͜ͱ͕Ͱ͖Δɻ[Spitkovsky(2006)]݁Ռɺforce-free modelͷޫͱͯ͠

L ≈ µ2Ω4

c3
(1 + sin2 α) (27.9)

͕ಘΒΕͨɻ

• current sheet Ε͚ͨΕͲͦ͜ݱ͕ B → 0ͳͷͰ force-free ΕΔͱ͜Ζʹͳ͍ͬͯΔɻഁ͕ࣅۙ

ղͰ dissipation ͕҉ʹೖ͍ͬͯΔɻ

• ͍Ζ͍ΖͬͱΒ͘͢͠Δༀ͕ codeͰΘΕ͍ͯͯɺͨ ͱ͑ɺE < BΛ՝͢ίʔυͰ separatrix

Ͱ current sheet͕ग़Δ͕ɺ՝͞ͳ͍ίʔυͰ current sheet ͕ফ͑ͨΓ͢ΔɻҙΛཁ͢Δɻ[?]

27.4 Non fore-free model; toward a realistic magnetosphere

27.4.1 Space-Charge-Limited flow

emf͕େ͖͍ͷͰ space-charge-limitation ͕ޮ͘ঢ়͕͋گΔ:

n <∼ |ρjg| ∼
ΩB

2πce
. (27.10)

E∥ ΛεΫϦʔϯ͢ΔͷʹेͳϓϥζϚͷͳ͍ “gap”͕ൃੜ͠ɺͦ͜ͰՃ͕͜ىΓ͏ΔɻՃཻࢠʹ

ΑΔЍઢ์ࣹͱͦΕʹͭͮ͘ిࢠɾཅిࢠରੜʹΑΓϓϥζϚ͕ेʹൃੜ͢ΔྖҬͰ্هͷ space-

charge-limitationղফ͢Δɻ

ిͷൃੜ࣓ྗઢ্ΛྲྀΕΔిྲྀڧ (global ʹܾ·Δྔ)ʹΑͬͯৼΔ͍͕มΘΔɻ

• |j| < |ρgjc| (sub-GJ current)ͰՃిൃੜ͠ͳ͍͕ɺ
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Non force-free
magnetosphere

toward 
the realistic model
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Acceleration

27.3. VACUUM MODEL & ELECTROSPHERE ୈ 27. A REVIEW

ͱॻ͖͑ΔɻE′ = E −Ec ిͷڞճసి͔ΒͷζϨͰ E∥ ΛؚΜͰ͍ΔɻඇڞճసిͱΑΕ

Δɻ্ͷࣜɺʮਅిՙີ͕ GJີ͔ΒͣΕΔͱɺԊ࣓ྗઢి͕ൃੜ͢ΔʯͱಡΊΔɻ

ҰํɺE∥ = 0Ͱ͋ΕɺϓϥζϚ

vD = c
Ec ×B

B2
= Ω× r = Ωr sin θ (27.5)

Ͱڞճస͠Α͏ͱ͢ΔͷͰɺ

RL = c/Ω (27.6)

Ͱޫʹୡ͢Δɻ͜ͷݶքΛ light cylinder ͱΑͼɺ͜͜Ͱ v → cͳΒϩʔϨϯπҼ͕ࢠඇৗʹେ͖͘ͳ

ΓɺϓϥζϚੑ׳ γm͕૿େͯ͠ɺి࣓ྗ༏ͷաఔ่յ͢Δɻԕ৺ྗՃͱ͍͏ݱ͕ظ͞ΕΔɻ

27.3 Vacuum model & Electrosphere

disc sheare ͷͨΊʹ diocotron instability ͕ equatorical disc ʹൃੜɻඇৗʹऑ͍ outflow Λੜ͡Δɻlc

ۙ͘Ͱ૬ରతޮՌͰ diocotron instablity ੍͞ΕΔɻ[Cerutti & Philippov(2017)]

Electrosphere Ͱ gap ͕ଘ͠ࡏɺgap  pair creation ʹରͯ͠ෆ҆ఆͰ͋Δɻpair creation Δ·͕࢝

ͱ outger gap ͞ΕΔ͜ͱ͕ఏҊ͞Εͨɻ[Wadaܗ͕ & Shibata(2007)]

27.4 The force-free model

gaps ͰϖΞੜ͕Ͱ͖Δͱ plasma Ͱຬͨ͞ΕͨͱۙࣅͰ͖Δ࣓ܗ͕ݍؾ͞ΕΔͩΖ͏ɻforce-free

modelڀݚରͱͯ͠༗ޮͱࢥΘΕΔɻ

ρeE +
1

c
j ×B = 0 (27.7)

27.4.1 Axisymmetirc steady model

27.4.1.1 Split mono pole model

ղੳղ͕͋Δɻ

split monopole solution ࣼΊճసͰ͋Μ·ΓมΘΜͳ͍ɻ[Bogovalov(1999)]

27.4.1.2 Axisymmetirc steady model with a dipole source field

close-open ·ͳ͍ɻେ͑ݴͰ͖ΔɻɿϓϥζϚೖ͍ͬͯͳ͍ͷͰՃʹ͍ͭͯݱ࠶͕ܗຊجͷߏ

͔ͳߏਤ রɻࢀ??

axisymmetric force-free ղͷಛͱ:

• ೋͭͷྖҬɺopen / closed magnetic flux regions ͱബ͍ current sheet ͔Βߏ͞Ε͍ͯΔɻa Y-

shaped current sheet ɺڥք (separatrix)ͱಓʹ͋Δ equatorial magnetic netural sheet (MNS)

͔ΒͳΔɻseparatrix ͱ neutral sheet ͷଓΛ Y-point ͱݺͿɻ

416
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1. Assuming no pair production, one may obtain
E// acceleration with

2. once E// accelerate particles, pair creation
follows and in the next step, E//will be screened
out.

3. Because pair-creation stops and flows out, the 
situation turns back to the initial state.

particle acceleration and pair-
creation will be intermittent.
maybe mild acceleration persistently? 
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࣓Λ͕ͨͬ࣋ࣗస͍ͯ͠Δ͜ͱʹΑΔൃి (୯ۃ༠ಋ)͕ύϧαʔͷΤωϧΪʔ์ग़ͷݯىͰ͋Γɺ

์ग़ͷ࡞༻ͱͯࣗ͠సݮਰ (spin-down)͢Δɻ࣮ࡍʹύϧεͷ؍ଌ͔Β P = 2π/Ωͱ Ṗ = −2πΩ̇/Ω2

͕Θ͔ΔͷͰ์ࣹͷ࡞༻Ͱ͋ΔճసΤωϧΪʔͷଛࣦ ℑΩΩ͕̇ΒΕΔɻ͋ͱͰݟΔΑ͏ʹ࣓ؾϞʔϝϯ
τ µͷճసମ͕์ग़͢Δి࣓ΤωϧΪʔ͕ҎԼͷΑ͏ʹධՁ͞ΕΔɿ

ℑΩΩ̇ ≈ µ2Ω4

c3
(27.1)

͜Ε͔Βɺதੑࢠͷ࣓ؾϞʔϝϯτ͕ µ =
√

c3ℑΩ̇/Ω3 ͱ ਪఆͰ͖Δɻ

ύϧαʔ࣓ݍؾʹ͓͚ΔཻࢠՃిͷ࣓ํ E∥ʹΑΔͷͱɺ࣓ʹਨํ E⊥ʹΑ

Δͷʹେ͖͚͘ΒΕΔɻ࣓ݍؾϓϥζϚͷ୯Ґମੵʹಇ͘ྗͷόϥϯε

(inertia) = ρeE +
j ×B

c
+ (non-electromagnetic forces) (27.2)

ͱݱΘͤΔͩΖ͏ɻి࣓ྗ͕ѹ͍ͯ͠ΔͷͰɺE = E⊥, E∥ = 0 ͕ୈҰۙࣅͰ͋Γɺ࣓ྗઢిҐ໘

ʹͳΔɻӉཧʹग़ͯ͘Δ΄ͱΜͲͷ໘Ͱ͜ͷۙࣅඇৗʹਖ਼͘͠ɺ͜ͷ่͕ۙࣅΕΔͷඇৗʹಛ

घͳہॴతྖҬͷΈͰ͋Δ (ͨͱ͑ɺ࣓ؾϦίωΫγϣϯαΠτ)ɻ͔͠͠ɺύϧαʔͰ͜ͷࣄ͕ਖ਼

͘͠ͳ͍ɻӡಈํఔ͚ࣜͩΛͯݟE = E⊥ Λ৴͕ͨ͡ɺ͜ͷͱ͖ɺ

ρe =
∇ ·E⊥
4π

(27.3)

ͷۭؒిՙີ͕ଘ͢ࡏΔ͜ͱ͕҉ʹԾఆ͞Ε͍ͯΔɻύϧαʔ࣓ݍؾͰయܕతʹ |∇ · E⊥|/4π ∼
1012cm−3 Ͱ͋Γɺύϧαʔ࣓ݍؾͰ͜ͷఔͷϓϥζϚͷଘࡏΛ҉ͷʹԾఆ͢Δ͜ͱ͘͠ (தੑ

ϓϥζϚͷ͕ۙ͑ࣅͳ͍)ɺϓϥζϚͷڅڙʹ͍ͭͯਅݕʹ౼͠ͳ͚ΕͳΒͳ͍ɻҰ୴ɺཻ͕ࢠՃ

͞Εɺେྔͷిࢠɾཅిࢠର͕ൃੜ͢Ε͜ͷղফ͢Δɻ

ύϧαʔ࣓ݍؾͰ͜ͷࣄΛΘ͔Γ͘͢͢ΔͨΊʹɺத৺ʹ͋Δ߶ମճస͢Δ࣓ؾϞʔϝϯτʹΑ

Δ࣓ʹਨͳ༠ಋిΛ Ec = −(Ω × r) ×B/c (Ϳݺճసిͱڞ) ͱ͓͍ͯɺ͜ΕʹରԠ͢Δۭؒి

ՙີ (Goldreich-Julina charge density) Λ ρgj = ∇ ·Ec/4πͱॻ͍ͯɺPoission equationΛ

rev-Poisson1; ∇ ·E′ = 4π(ρe − ρgj) (27.4)
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Δ࣓ʹਨͳ༠ಋిΛ Ec = −(Ω × r) ×B/c (Ϳݺճసిͱڞ) ͱ͓͍ͯɺ͜ΕʹରԠ͢Δۭؒి

ՙີ (Goldreich-Julina charge density) Λ ρgj = ∇ ·Ec/4πͱॻ͍ͯɺPoission equationΛ

rev-Poisson1; ∇ ·E′ = 4π(ρe − ρgj) (27.4)

The difference of the space charge 
density from the GJ density produces 
E//. 

The space charge density is linked to 
the current density which is 
determined by the global dynamics. 
Thus the problem is somewhat 
complicated,….
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Y-point

Possible E// acceleration, pair creation sites
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Fig. 7 Poloidal cross section of the magnetosphere of the aligned rotator (from Chen and
Beloborodov 2014). Vertical dashed line shows the light cylinder R

LC

= c/⌦. Green curves
show the poloidal magnetic field lines. Top: (a) Radial component of the electric current
density Jr. (b) Net charge density ⇢. (c) Toroidal component of the magnetic field B�.
Units: distance is measured in r?, charge density in mec2/4⇡er2?, current in m

e

c3/4⇡er2?,
and field in m

e

c2/er?. Bottom: (a) Average ion energy in units of m
e

c2 (the ion rest mass
was re-scaled to 5m

e

in the simulation). One can see the acceleration of ions in the gap,
their ejection through the Y-point, and gyration in the equatorial current sheet. (b) Ratio
of matter energy density Um to magnetic energy density UB = B2/8⇡.

– The current sheet inside the light cylinder (the separatrix) develops a time-
dependent gap stretched along the closed zone boundary: the separatrix

gap. This accelerator enables pair creation required to sustain the current
sheet and the open magnetic flux. The gap is qualitatively di↵erent from the
“slot gap” and “outer gap” proposed in earlier works. The earlier models
assumed that the charge density “desired” by the magnetosphere is ⇢

GJ

.
In contrast, the charge density in the current sheet greatly exceeds ⇢

GJ

(in
the ideal force-free model it would be infinite). The accelerating voltage
develops because the large ⇢ and J (with ↵ < 0) cannot be sustained
without a high rate of pair creation.

The global PIC simulations also show how the plasma is accelerated and
ejected through the Y-point into the equatorial current sheet (Figure 7).
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in the simulation). One can see the acceleration of ions in the gap,
their ejection through the Y-point, and gyration in the equatorial current sheet. (b) Ratio
of matter energy density Um to magnetic energy density UB = B2/8⇡.

– The current sheet inside the light cylinder (the separatrix) develops a time-
dependent gap stretched along the closed zone boundary: the separatrix

gap. This accelerator enables pair creation required to sustain the current
sheet and the open magnetic flux. The gap is qualitatively di↵erent from the
“slot gap” and “outer gap” proposed in earlier works. The earlier models
assumed that the charge density “desired” by the magnetosphere is ⇢

GJ

.
In contrast, the charge density in the current sheet greatly exceeds ⇢

GJ

(in
the ideal force-free model it would be infinite). The accelerating voltage
develops because the large ⇢ and J (with ↵ < 0) cannot be sustained
without a high rate of pair creation.

The global PIC simulations also show how the plasma is accelerated and
ejected through the Y-point into the equatorial current sheet (Figure 7).

1. particle acceleration and following pair-creation take 
place around Y-point and along the separatrix

2. +particles come into Y-point from both hemispheres 
and go out through the neutral sheet exchanging 
theta-momentum

3. -particels are accelerated backward
4. spin-down luminosity is roughly consistent with the 

result of FF model, but 10-20% is converted to plasma 
kinetic energy for the aligned rotator. This rate 
decreases with inclination; no dissipation for oblique 

24 Benôıt Cerutti, Andrei M. Beloborodov

Fig. 10 Top: Sample trajectories of a high-energy positron (left) and electron (right) ac-
celerated in the current sheet of an aligned rotator, shown projected on the poloidal plane.
Bottom: The particle Lorentz factor as a function of time. Black symbols on the curves in-
dicate the correspondence between the time (bottom panels) and position on the trajectory
(top panels). Figure adapted from Cerutti et al. (2015).

where  is the multiplicity of e± pairs ejected in the current sheet, defined rel-
ative to the minimum particle number required to sustain the electric current.
Hence, the average particle ejected by a high-multiplicity pulsar earns only
a small fraction of the vacuum potential drop. Cerutti et al. (2015) tracked
the motion of accelerated particles in their simulations of the aligned rotator
and studied where the particles gain their energies. They found that posi-
tive charges are accelerated outward as they cross the Y-point region and get
ejected along the equator. In contrast, electrons are mainly accelerated as they
precipitate back towards the star along the current sheet (see Figure 10).

E�cient particle acceleration leads to strong non-thermal high-energy emis-
sion. The radiation-reaction force due to the curvature and synchrotron emis-
sion can be of the same order as the Lorentz force, and particle momentum
perpendicular to the field lines may be quickly radiated away. These e↵ects
are self-consistently included in the PIC simulations. In classical electrody-
namics, the radiation reaction force is given by the Landau-Lifshitz formula
(Tamburini et al. 2010; Cerutti et al. 2016b)
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Fig. 11 Top: Spatial distribution of the high-energy synchrotron radiation from an oblique
rotator obtained with a 3D PIC simulation. The grey scale shows the isotropically integrated
flux, while the color scale shows the emitting regions at the pulsar phase 0.17 as seen by an
observer looking along the equator. The angle between the rotation axis (blue arrow) and
the magnetic axis (red arrow) is � = 30o. Red curves are the magnetic field lines. Bottom:

Reconstructed high-energy pulse profile of radiation received by the observer. Figure adapted
from Cerutti et al. (2016b).
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to both the definition of gaps and the exact geometry of the magnetic field – firstly,
because the geometry of the field defines how the effects of aberration of light and
light travel delay add together to form the caustics; secondly, because the geometry
of the field close to the light cylinder determines the shape of the polar cap on the
star, which in turn controls the shape of the radiation region [9]. This requires a
global modelling of the pulsar magnetospheres, and presumably can be done only
via numerical simulations.
Moreover, the reconnection in the wind is expected to be a very powerful particle

accelerator, whereas details of acceleration processes (and accelerating fields) that
lead to magnetospheric emission are strongly model-dependent. Extreme conditions
of particle acceleration are indeed required to explain recent observations of pulsars
above a hundred of GeV [5, 82, 99].
To understand how the pulses from the wind appear in the lightcurves, we as-

sume that the corrugated current sheet can be described as subsequent shells, which
radiate after crossing a sphere of a radius r0 (see Fig. 1.2). A distant observer will
notice a peak of emission from the shell that has crossed the radius r0 along his
line of sight, followed by a quick decline of the emissivity as the sheet propagates
outwards, due to adiabatic cooling and radial dependence of magnetic field (Eq. 1.7
and 1.8). Depending on the viewing angle, the observer can detect up to two pulses
per rotational period of a pulsar – (1) two pulses with changing separation if his line
of sight lies in the wedge π/2− χ < θobs < π/2+ χ ; (2) one pulse, if the line of
sight is close to θobs ≈ π/2±χ ; (3) no pulse if θobs < π/2−χ or θobs > π/2+χ .

Fig. 1.2 Lightcurves from the wind. A distant observer can detect a pulse of emission when the
expanding current sheet passes the radius r0 along his line of sight. The emissivity of this sheet
quickly diminishes afterwards. Depending on the viewing angle, the observer can detect up to two
pulses per rotational period of a pulsar.

The pulses of radiation, if emitted too far from the pulsar, would be, however,
smeared out. Let the observer be located is at the distance D from the pulsar. In
Fig. 1.3 photons 1 and 2 are emitted at the same time from the shell passing the
radius r0 (for simplicity we assume that the shell is spherical, which is true in the
first approximation far from the light cylinder). The first photon arrives at the ob-

Pulsar striped winds
¥bibitem[Mochol(2017)]{2017arXiv170200720M} Mochol, I.¥ 2017, arXiv:1702.00720
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8.5. Emission from an infinitely thin sheet

In the precedent paragraph, we explained the origin of pulses, provided that the emit-
ting layer lies sufficiently close to the light-cylinder. We now study more quantitatively
this pulsed emission. The mechanisms giving rise to high energy emission are diverse. We
distinguish mainly between
• synchrotron emission of ultra-relativistic hot electrons/positrons pairs in the strong

magnetic field of the wind.
• inverse Compton emission of internal or external photons, for instance those coming

from a companion, the surrounding nebula, thermal photons of the surface or synchrotron
photons themselves.
The intensity of emission for the synchrotron and inverse Compton radiation is propor-
tional to the following space-time integral

Iν(t) =

∫ +∞

−∞

∫ +∞

R0

∫ π/2+χ

π/2−χ

∫ 2π

0
jν(r, t

′) δ(r − rs(ϑ,ϕ, t
′))×

× δ

(

t′ − (t−
||Robs − r||

c
)

)

r2 sinϑ dt′ dr dϑ dϕ .

Integration must be performed on the current sheet making sure to include the retarda-
tion effects due to propagation at finite speed of the photons. The observer is located
at the point Robs where the unit vector is nobs = Robs/Robs. Emission starts at an
arbitrary radius R0 ! Γ 2

v rL and t′ = t−r·nobs/c corresponds to retarded time associated
to emission at point r in the sheet. The Dirac distributions insure emission only when
being on the current sheet, thus the δ(r − rs(ϑ,ϕ, t′)) term, and when observation time
is related to retarded time of emission t′ of a photon emanating from the point r of the

sheet, thus the δ
(

t′ − (t− ||Robs−r||
c )

)

term.

Synchrotron and inverse Compton emissivities, far from the low and high frequency
cut off, are given respectively by

jsyncν (r, t) = Ke(r, t) ν
−(p−1)/2 D(p+3)/2 B(p+1)/2 (8.24a)

jICν (r, t) = Ke(r, t) ν
−(p−1)/2 Dp+2 nγ(ε) (8.24b)

Relativistic beaming effects are symbolised by the usual Doppler factor

D =
1

Γv (1− βvβvβv · nobs)
. (8.25)

The power law dependence on D is different for jsyncν and jICν , thus affecting the
pulse shape depending on the distribution of particles but also following the emission
process considered. The light curves exhibit peaks that are more or less pronounced. For
pedagogical purposes, we show a sample of light curves for a prescribed volume emissivity.
The impact of different Lorentz factors and spectral indices are shown in fig. 16 for
synchrotron emission and in fig. 17 for inverse Compton emission. Synchrotron profiles
differ from inverse Compton profiles but the general trend is the same: a decrease in the
full width half maximum when the power law index increase and/or when the Lorentz
factor is augmented.
Knowing the shape of pulses for a given frequency, now we are interested in the

spectral power density from this radiation. We have seen that pulsed emission comes from
relativistic Doppler beaming. The exact function of this dependence in the Doppler factor
is determined by the same power law spectral density. It is therefore essential to know
this spectral power density for estimating the shape of the pulses at a given frequency.
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Figure 16. Sample of synchrotron emission light curves for different power law indices
p = {1, 2, 3, 4} with Γv = 10 on the left and for different Lorentz factors Γv = {2, 5, 10, 20, 50}
with p = 2 on the right. Intensities are normalized to Imax = 1.
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Figure 17. Sample of inverse Compton emission light curves for different power law indices
p = {1, 2, 3, 4} with Γv = 10 on the left and for different Lorentz factors Γv = {2, 5, 10, 20, 50}
with p = 2 on the right. Intensities are normalized to Imax = 1.

We study the synchrotron and inverse Compton emission. Emissivity is chosen so as to
include the power law dependence of the frequency of observation considered. The shape
of the pulses depend not only on the Lorentz factor of the wind and the emission process
itself, IC or synchrotron, but also on the observation frequency before the low cut off,
between the two cut off frequencies and after the high frequency cut off. Light curves are
shown in the case of inverse Compton emission of the gamma ray binary PSR B1259-63
in Pétri & Dubus (2011). In the striped wind model for high-energy emission, we observe
a natural narrowing of the pulse width at highest energies due to the increased sensitivity
on relativistic beaming.

8.6. Emission of a more realistic model

In reality, the current sheet in the striped wind is not infinitely thin but possesses a
finite thickness defined by its internal dynamics therefore a spatial extension induced by
pressure in the gas heated to relativistic temperatures. To account for this finite thickness
of the current sheet , it is necessary to integrate emissivity in the whole three dimensional
volume of the wind and not only on the 2D current sheet. To extract meaningful light-
curves we need to set the parameters of a realistic wind model. These can be divided
into three groups

(i) geometrical properties:
• the obliquity χ of the pulsar.
• the inclination ζ of the line of sight with respect to rotation axis.
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Summary in Jan. 2018
1. Rotation power is approximately given by

2. particle acceleration by E// (non-ideal-MHD) is 
essential.

3. Simulations by non-MHD and PIC are strong tool, but
4. Acceleration site is still unidentified

- Y-point   - equatorial current sheet   - outer gap
- separatrix gap   - polar caps

5. Radio emission mechanism:  open question
6. Pulsar Wind: open question
7. Link between radio/timing and high-energy emission 

should be investigated.

14 Benôıt Cerutti, Andrei M. Beloborodov

Fig. 5 Snapshots of time-dependent force-free simulations of the aligned (left) and oblique
(right) rotators (from Spitkovsky 2006). The oblique rotator magnetosphere is shown in the
⌦�µ plane; the inclination angle is � = 60o. Solid lines represent magnetic field lines, and
color shows the strength of the magnetic field component perpendicular to the plane of the
figure (the toroidal field in the aligned rotator case).

Using ⇢ = r ·E/4⇡ and substituting Equation (25) into the Maxwell equation
@E/@t = r ⇥ B � (4⇡/c)J one can express @E/@t in terms of E, B, and
their spatial derivatives. Together with @B/@t = �cr⇥E, this gives a closed
dynamical system of field equations that can be evolved in time. For example,
one can start with a non-rotating star with a vacuum dipole magnetosphere,
then spin it up to a desired ⌦, and let it relax to the quasi-steady state. For the
aligned rotator, these simulations reproduced the steady-state solution with
the Y-point located close to the light cylinder.

Three-dimensional time dependent simulations were then performed for the
oblique rotator (right panel in Figure 5, Spitkovsky 2006; Kalapotharakos and
Contopoulos 2009; Kalapotharakos et al. 2012; Pétri 2012). These simulations
showed how the spindown power depends on the angle � between ⌦ and µ
(Figure 6). The result is well approximated by a simple formula proposed by
Spitkovsky (2006),

L ⇡ µ

2

⌦

4

c

3

�
1 + sin2 �

�
. (26)

In contrast to the oblique split monopole, the dipole spindown power depends
on �. The term proportional to sin2 � is similar to the vacuum model, except
for a di↵erent numerical prefactor (1 instead of 2/3). Note also that L does
not vanish in the aligned case � = 0. The origin of the variation L(�) was
discussed by Tchekhovskoy et al. (2016). Part of it comes from the increasing
open magnetic flux  

pc

(�) (explaining 40% of the increase in L), and the
remaining part is caused by the increasing concentration of the open magnetic
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