宇宙再電離の観測研究 ---現状と課題---

大内 正己 (東京大学 宇宙線研究所)

Outline

- Introduction (reionizaiton tightly connected with galaxy formation)
- Three open questions (unknowns)
 - 1. Cosmic reionization history.
 - 2. Reionization sources
 - 3. Physical process

Cosmic Reionization

Robertson et al. (2010)

Cosmic Reionization:

Universe filled with neutral hydrogen

 \rightarrow lonized hydrogen at z>6

 $H+\gamma \rightarrow p+e-$ (Hydrogen ionization)

QSO Spectra

• Almost no neutral hydrogen (Lya) absorption at $z\sim0\rightarrow$ Local IGM is ionized.

Cosmic Reionization

Robertson et al. (2010)

Cosmic Reionization:

Universe filled with neutral hydrogen

 \rightarrow lonized hydrogen at z>6

 $H+\gamma \rightarrow p+e-$ (Hydrogen ionization)

Cosmic reionization

RT simulations (lliev et al. 2006)

• Basic picture: Ionizing photons from star-forming galaxies make ionized bubbles that fill the universe-> reionization.

Tight Relation between Cosmic Reionization & Galaxy Formation

Galaxy/star formation

z=100

z=29

Open Questions

- 1. Cosmic reionization history. Optical vs. CMB observations.
- 2. What are reionization sources? Ionizing photon budget balanced?
- 3. Physical process (inside-out, outside-in, filament-last?)

COSMIC REIONIZATION HISTORY

How Do You Probe Cosmic Reionization?

Galaxy (blue), Neutral H(green), H⁺ (orange)

- Evolution of ionization states(neutral/ionized) → Cosmic reionization history
 - Neutral hydrogen fraction: $x_{HI} = (n_{HI}/n_{H})$. Estimating $x_{HI}(z)$
 - Emission from ionized gas (e.g Lya lines)
 - The density of ionized gas is extremely small, 5x10⁻⁶ times smaller than that of Galactic gas. →Extremely faint/area. Very difficult to detect.
 - Emission from neutral gas (21cm line)
 - Again, too faint. No detections (PAPER, GMRT)

Probing Reionization History (1) Gunn Peterson τ SDSS QSO Spectra

	2022 02	U Speci	
J1148+5251 z = 6.42	diale de contrat		
J1030+5254 z = 6.48		M~+	() () () () () () ()
J1623+3112 z = 6.22		Mm	
J1048+4637 z = 6.20			
J1250+3130 z = 6.13			· · · · · · · · · · · · · · · · · · ·
J1602+4228 z = 6.07			
J1630+4012 z = 6.05			
11107-0540			
40000000000000000000000000000000000000		N	······
J0818+1722 z = 6.00			
J1306+0356 z = 5.99		m	
J1335+3533 z = 5.95	www.www.www.	Junior	والعالية المتلا والمعربة والمستحد
J1411+1217 z = 5.93			
J0840+5624 z = 5.85		Mary Mary	-
J0005-0006 z = 5.85			
J1436+5007 z = 5.83	A		و فقر وساله ال
J0836+0054 z = 5.82	A second s	-+	
J0002+2550 z = 5.80		• • • · · · · · · · · · · · · · · · · ·	····
10027+2001 7 - 5 70	 	*****
	and the second secon		
6800 7000 7200 7400	7500 7800 8000 8200	8400 8600 8800 900	9200 9400 9600 980

λ(Å)

$$\tau_{\rm GP}(z) = 4.9 \times 10^5 \left(\frac{\Omega_m b^2}{0.13}\right)^{-1/2} \left(\frac{\Omega_b b^2}{0.02}\right) \left(\frac{1+z}{7}\right)^{3/2} \left(\frac{n_{\rm HI}}{n_{\rm H}}\right)$$

Gunn-Peterson optical depth ($\rightarrow I/I_0 = e^{-\tau_{GP}}$): GP test For $(n_{HI}/n_{H}) > 0.01\%$ at z $^{\circ}6$, large τ_{GP} ! (due to large σ_{Lya}) Problem: no x_{HI} estimates beyond z $^{\circ}6$ with Gunn-Peterson optical depth

Probing Reionization History (2) CMB Polarization

- Cosmic microwave background (400 photons/cm³)
- CMB photons interact with free electrons in the ionized (+partly ionized) universe via Thomson scattering → Polarization (incl. temp. fluctuation suppression)
- Optical depth of Thomson scattering

Instantenous reionization at z_r

- $\tau = 0.089 \pm 0.032$ (Plank2013), 0.084 ± 0.013 (WMAP9; Hinshaw+12)
- $\rightarrow z_r \sim 10-11$ (instantaneous reionization; cf. $\Delta z=4.4$; Zhan et al. 2011)
- Problem: No time resolution

Probing Reionization History (3) Lyα Damping Wing Absorption

 Damping wing absorption of inter-galactic medium (IGM) just in front of a very bright object (GRB, QSO, and galaxy) at z>~7

Damping Wing Absorption (a) GRBs?

- The absorption found in the GRB at z=6.3 (GRB050904). Damping wing absorption or the gas associated with the host galaxy (DLA)? Upper limit of x_{HI}<0.17
- The highest redshift GRB at z=8.2 (GRB090423) → too faint to identify the absorption.

- z=7.1 Quasar. Most distant, so far.
- Assuming the damping wing absorption of neutral IGM $\rightarrow x_{HI}=0.1-0.5$ is preferred. Considering the gas associated with the host galaxy, $x_{HI}=1$ is rejected. Mortlock et al. concluded $x_{HI}>0.1$

- Lya emission line from galaxies are also absorbed by damping wing absorption.
- \rightarrow Towards the more neutral universe, one expects less galaxies with a strong Lya emission line.
- Fraction of Lya emitting galaxy to all galaxies, X_{Lya} . Significant drop of X_{Lya} at z~7.
- \rightarrow Explaining it with damping wing absorption, $x_{HI} \sim 0.5$

- x_{HI} estimates are too high at z^{7} to explain τ ?
- Or too high τ value??

Why is there a tension between optical and CMB results?

Three possibilities so far claimed

- The existence of clumpy HI clouds within the ionized bubbles that absorb Ly selectively (Bolton & Haenelt 2013)
- Long extended cosmic reionization where the early starformation at z > 10 are efficiently emitting ionizing photons to make intermediate HI fraction at z > 10 (Dunkley et al. 2009).
- Ionizing photon escape fraction is high, and that Ly photons are not efficiently produced in galaxies at z > 7 (Dijkstra et al. 2014).

REIONIZATION SOURCES

Star-Formation History Known To Date

- Hubble Ultradeep field(HUDF)+CLASH
 - Peaking at z^2-3 .
 - z^7 SFRD comparable today.
 - Rapid buildup in SFRD at z>~8-10 or not?? (Oesch+13 vs. Ellis+13)

Dropping Star Formation Rate

--lower ionizing photon production rate towards high-z--

• Ionizing photon production rate from galax \ddot{y} observations

$$\dot{N}_{\rm ion}({\rm s}^{-1}~{\rm Mpc}^{-3}) = 10^{49.7} \left(\underbrace{\frac{\epsilon^{\rm g}}{10^{25}}}_{3} \underbrace{\left(\frac{\alpha_{\rm s}}{3} \right)^{-1}}_{3} \left(\underbrace{\frac{f_{\rm esc}}{0.1}}_{0.1} \right),$$

Ionizing emission density at ~900A, ϵ^{g} ~ $\rho/6=2e25$ for z~7, spectral index, α_{s} ~3, and escape fraction, f_{esc} ~0.04 $\rightarrow \log dN_{ion}/dt = 49.6 \text{ s}^{-1} \text{ Mpc}^{-3}$

• Ionizing photons required for ionized Universe are given by

$$\dot{N}_{\rm ion}({\rm s}^{-1}~{\rm Mpc}^{-3}) = 10^{47.4}C_{\rm H\,{\scriptscriptstyle II}}(1+z)^3$$

 C_{HII} is a clumping factor, $C_{HII} = \langle n_{HII}^2 \rangle / \langle n_{HII} \rangle^2$; $C_{HII} = 1$ is for uniform universe.

Missing Ionizing Photon Problem?

Robertson+10

Estimating ionizing photon budget.

- − SF history (∞ ε)→ ionizing photon rate (dN_{ion}/dt)
- Electron density, $n_e(z) \rightarrow$ Thomson scattering τ_e
- τ_e from galaxies is smaller than τ_e from CMB measurement

 \rightarrow Shortage of ionizing photons. Are ionizing photons missing?

But, galaxies can be major reionization sources, in case of high fesc>0.2, flatter spectrum (α), and/or faint galaxy (m>-18) contribution to ϵ (e.g. Robertson+12)

HFF's 1/6 data set \rightarrow f_{esc}>0.1 at the >2 sigma level Extended SFR (reionization) history is preferred.

PHYSICAL PROCESS OF REIONIZATION

Reionization Processes from Bubble Topology

- Physical processes (inside-out, outside-in, filament-last?)
- Clustering of Lya emitters: imprints of neutral fraction and ionized bubble topology (McQuinn et al. 2007, Jensen et al. 2013)

Hyper Suprime-Cam (HSC) Survey

- Reducing the errors of IGM x_{HI} down to ~10% (model variance limit) w 10,000 LAEs at z~6-7
- Clustering→Investigating reionization process that cannot be addressed by the previous studies (topology of ionized bubbles etc.). HSC 300-night survey is starting today.

Physical Process of Reionization

- HI distributions (from 21cm) and galaxies (from optical) anti-correlate.
- Distance scales of anti-correlation→ ~Inside-out (typical sizes of ionized bubbles at the epoch)
- 21cm-galaxy corss-power spectrum. LOFAR 21cm+ Subaru/HSC(+PFS) survey in ELAIS-N1→~3σ detection of signal (Lidz+09).
 - LOFAR(Zaroubi+)

Summary

- Reionization studied by observations
- Three open questions
 - Cosmic reionization history. Sharp/Extended reionization hisotry?
 - What are reionization sources? Ionizing photon budget balanced?
 - Physical process (inside-out, outside-in, filament-last?)

On-going observations addressing these issues. The major questions may be changed in the SKA era.

The role of SKA \rightarrow

Reliable confirmation,

- Addressing unresolved issues, and
- Synergistic data (HI vs. ionizing sources).