宇宙電波懇談会シンポジウム2013「SKA計画」 2013年12月18日-19日、於・国立天文台

SKAとALMAの連携

河野孝太郎 (東京大学・IoA/RESCEU)

次の10年は宇宙再電離期が面白い SKAとALMAの連携が鍵

 中性水素原子ガスは21cm線で
 → SKA-Low+熊崎さん、高橋さん他 (但し個々の銀河は見えない)

Lyα

ゴメの神た

分子ガスはCOで!

→Low-J CO輝線銀河をSKA-Highで広域探査
 →ALMAでfollow up

光乖離領域(PDR)は[CII]158µmで
 →次世代35-50m大型ミリ波サブミリ波単一鏡で広域探査
 →ALMAで徹底観測(田村陽-さん?)

電離領域(HII)は[OIII]88µmで
 →すばる+TMT、JWSTで候補天体を広視野で探査
 →ALMAで徹底観測(松尾さん、井上昭雄さん?)

Q:なぜ low-J CO?

HCN line SED in galaxies

 M_{mol_gas} $f_{mol_{gas}} = \frac{1}{M_{mol_{gas}} + M_{*}}$

z=1-1.5 (N=50):

CO, HCO+, HCN等、基本的かつ重要 な分子のlow-J遷移@3mm帯 → 宇宙再電離期は10-30GHz帯

現在知られている最遠方のサブミリ波銀 河 HFLS3 at z=6.34 (& Arp220 at z=0.018との比較)

45m/ALMA-band3での知見をhigh-z(特に宇宙再電 離期)で活かすには10-30 GHz帯が生命線。 Riechers et al. 2013, Nature, 496, 329

「最も明るい人」で数時間@JVLA ULIRGs(L(IR)~10^12 Lo)では100時間!? LIRGsでは・・・

Riechers et al. 2013, Nature, 496, 329

Dusty starburst + 超巨大ブラックホール @z=7.084 quasar J1120+0641

 235 GHz continuum
 → L(FIR) = 6x10^11 - 2x10^12 Lo, M(dust) = 7x10^7 - 6x10^8 Mo Venemans et al. 2012, ApJ, 751, L25

Source is unresolved by 2".0 x 1".7 beam (10 kpc x 9 kpc)

- ALMAによるdeep survey
- HSCによる広域ク エーサー探査
- → 膨大なz>6の天体

候補

ALMA Band 3 (80-100 GHz帯) spectrum of NGC 1097

smoothed to df~9.8 MHz (or dv~33 km/s @HCN)

Chemical diversity among the starburst ring: tracing different phase of starburst?

Spectra at two brightest HCN(1-0) peaks (also bright in 3.2mm cont. → starburst)

Significant difference in HNCO strengths between 2 peaks

despite of similar intensities of HCN, HCO+, CS and C2H

Kohno et al. in prep.

分子存在量の導出 → Rotation diagram

レベル分布がBoltzmann分布(平衡温度T)に従うスペクトル線の柱密度は

$$N_{u} = N_{tot} \frac{g_{u}}{Q(T)} \exp\left(-\frac{E_{u}}{kT}\right)$$

ここで $Q(T) = \sum_{i} g_{i} \exp\left(-\frac{E_{i}}{kT}\right)$:全ての準位における状態数
E_i が一つの状態のエネルギー

・ 両辺をguで割って自然対数を取ると

$$\ln\left(\frac{N_u}{g_u}\right) = \ln\left(\frac{N_{tot}}{Q(T)}\right) - \frac{E_u}{k_B T}$$

→いろいろな遷移で、その遷移での 柱密度を測定し、Euの関数として プロット→ グラフの傾きからTが、 切片から全粒子数(Ntot)がわかる

Q: 遷移は2本もあれば充分では?

CS og₁₀(N_u/g_u) 32.7K 12 11 14 13 NGC253 2 ot 15.94 log₁₀(N_u/g_u) 13 12 $\log_{10}(\mathrm{N_u/g_u})$ 20.31 12 11 10 20 60 40 80 0 20 40 0

 E_u/k (K)

A:いいえ、幅広い量子数まで取らないと 大間違いをする可能性があります。

→SKAによる low-Jと ALMAによる high-Jの 両方の測定が必要です。

M 83

 $\mathbb{I}S$

7-6

60

 E_u/k (K)

80

Bayet et al. 2009, ApJ, 707, 126

宇宙再電離期の銀河研究: 連続波でのSKA-low & ALMA連携

Mm/submm imaging surveys

Importance of "sub-mJy" population

Flux density S(1.3mm) [mJy] 0.1 mJy

10.0 mJy

SXDS-UDS ancillary data (opt-IR) Galance 2013, A

Galametz et al. 2013, ApJS, 206, 10

Instrument	Filter	Central Wavelength (nm)	FWHM (arcsec)	Limiting Magnitude (5σ, 1 FWHM radius, AB)	Survey ^a
CFHT/MegaCam	и	386	0.86	27.68	(1)
Subaru/Suprime-Cam	В	450	0.82	28.38	(2)
+ Subaru HSC ultra-	deen V	548	0.82	28.01	(2)
	R_c	650	0.80	27.78	(2)
g, r, i, z, y, ~27-28 n	nag _{i'}	768	0.82	27.69	(2)
& NB816,921,101	<i>z</i> ′	889	0.81	26.67	(2)
HST/ACS	F606W	598	0.10	28.49	(3)
	F814W	791	0.10	28.53	(3)
HST/WFC3	F125W	1250	0.20	27.35	(3)
	F160W	1539	0.20	27.45	(3)
VLT/HAWK-I ^b	Y	1019	0.42/0.52/0.49	27.05/26.73/26.69	(4)
	K_s	2147	0.36/0.42/0.37	26.16/25.92/25.98	(4)
UKIRT/WFCAM	J	1251	0.76	25.63	(1)
	Н	1636	0.80	24.76	(1)
	K	2206	0.70	25.39	(1)
Spitzer/IRAC	3.6 µm	3562	~1.9	24.72 25.0	(5)
	$4.5 \mu \mathrm{m}$	4512	~1.9	24.61 Spitzer of	(10 (5)
	5.8 µm	5686	2.08	22.30	(6)
	8.0 μm	7936	2.20	_{22.26} (SPLASH)	2) (6)

Notes.

^a (1) UKIDSS: O. Almaini et al., in preparation; (2) SXDS: Furusawa et al. 2008; (3) CANDELS: Koekemoer et al. 2011; (4) HUGS: A. Fontana et al., in preparation (5) SEDS: Ashby et al. 2013. (6) SpUDS.

^b FWHM and limiting magnitudes are provided for the three HAWK-I pointings following the scheme Pointing1/Pointing2/Pointing3 (i.e., Central/West/East; see A. Fontana et al., in preparation).

Angular resolution of JVLA

	_							
Configuration	Α		В		С			D
B _{max} (km ¹)	36.4	_	11.1		3.4		1.03	
B _{min} (km ¹)	0.68		0.21		0.035 ⁵		0.03	5
Band	Synthe	esiz	zed Be	am	width 6	нрви	(arcs	ec)
74 MHz (4 band)	24		80		260		850	
350 MHz (P)	5.6		18.5		60		200	
1.5 GHz (L)	1.3		4.3		14		46	
3.0 GHz (S)	0.65		2.1		7.0		23	
6.0 GHz (C)	0.33		1.0		3.5		12	
10 GHz (X)	0.20		0.60		2.1		7.2	
15 GHz (Ku)	0.13		0.42		1.4		4.6	
22 GHz (K)	0.089		0.28		0.95		3.1	
33 GHz (Ka)	0.059		0.19		0.63		2.1	
45 GHz (Q)	0.043		0.14		0.47		1.5	

https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/resolution

JVLA → SKA1-midへの期待(1): (少なくとも)HSTと同等の角分解能

		JVLA	MeerKAT	SKA1- mid	ASKAP	SKA1- survey	LOFAR- NL	SKA1- low
Aeff/Tsys	m²/K	265	321	1630	65	391	61	1000
Survey FoV	deg ²	0.14	0.48	0.39	30	18	6	6
Survey Speed FoM	deg ² m ⁴ K ⁻²	0.98×10 ⁴	5.0×10 ⁴	1.0×10 ⁶	1.3×10 ⁵	2.8×10 ⁶	2.2×10 ⁴	6.0×10 ⁶
Resolution	arcsec	1.4	11	0.22	7	0.9	5	11

ようやく20cmでHST/WFC3と同等の解像度に

次はJWST→SKA2へ

2013 SKA Engineering Meeting (07-11 Oct. 2013),

R. Braun "Science Capabilities and Focus of SKA1-low, -mid and -survey"

https://indico.skatelescope.org/conferenceOtherViews.py?view=standard&confld=241

by Bunyo Hatsukade Observing Wavelength (µm)

SKA1/2への期待(2):感度

Frequency MHz

まとめ

- 宇宙再電離期の銀河研究を進める上で、SKAと ALMAの連携はとても重要。
- ・ 星間物質の進化を追う上で、分子ガスの理解も不可欠。個々の銀河が見える
 → SKA-high
- SKA-lowによるHIトモグラフィーと相補的役割
- 野辺山、ALMAにより切り開かれてきた「星間化学的な知見を系外銀河に応用する」という流れを、是非、高赤方偏移銀河に適用したい。→ SKA-high
- SKA-midによる深い電波連続波とALMAによるダス
 ト連続波の組み合わせ → 宇宙再電離期の「普通」の星形成銀河に手が届く。

日本がSKA-high (10~20? 35? GHz)をリー ドしなければいけないこれだけの理由

- サイエンスの必然性と我が国における伝統
 宇宙再電離期への幅広い興味・関心
 - 22GHz水メーザー、HALCA等 先駆的AGNサイエンス
 - CCS(40GHz帯)発見+アンモニア等 星間化学の伝統 - 銀河中心のサイエンス(連続波、偏波、CS等)
- これまでの日本の電波天文学の蓄積
 - 野辺山、スペースVLBI、大学連携VLBI、VERA
 - ALMA-Band1
- それを支えてきた産業界の技術・経験

日本がイニシアチブを!(+NRAOも巻き込んで)