21cm forest と high-z 電波天体 (radio quasars, GRBs + fast radio bursts)

井上進(MPI für Physik/東大宇宙線研)

島袋隼士、市来淨與(名大)、横山修一郎(宇宙線研)

outline

- 1. 21cm forest probe of cosmic dawn/reionization probe of cosmology (small-scale power spectrum) Shimabukuro, Ichiki, SI, Yokoyama arXiv:1403.1605
- 2. radio sources for 21cm forest studies radio quasars, Pop III GRBs (first SMBHs?)
- **3. fast radio bursts: potential probe of ionized IGM (missing baryons, reionization)** Inoue 2004 MNRAS 348, 999

21cm forest + mean IGM absorption Carilli, Gnedin & Owen 02 assuming Cyg-A like source at z=10

narrow features from dense systems + mean absorption from IGM

power spectrum of large-scale structure consistent with CDM+ Λ +adiabatic power-law fluctuations down to galaxy scales

power spectrum of large-scale structure consistent with CDM+ Λ +adiabatic power-law fluctuations down to galaxy scales

- ~100-1 absorbers with τ ~0.01-1 at z=10 -> BUT UV/heating important - ~1-0.1 absorbers with τ ~0.01-0.1 at z=20 -> >~10 lines of sight required

sterile neutrinos as dark matter: current constraints

sterile neutrinos as dark matter: current constraints

21cm cosmology: emission vs absorption (forest)

- emission (or absorption against CMB)
 pro: 3D (all-sky + z-dependence) <-> 2D CMB
 con: very weak signal << expected foreground
- absorption against high-z radio sources pro: limited only by flux and number of sources no or little foreground
 con: limited by flux and number of sources highly uncertain BUT interesting problem itself

potential background radio sources at very high z

required spectral resolution $dv \sim kHz$ (3km/s) at $v \sim <100$ MHz required flux for SKA

$$S_{\min} = 16 \text{ mJy} \left[\frac{S/N}{5} \frac{0.01}{\tau} \frac{10^6 \text{ m}^2}{A_{\text{eff}}} \frac{T_{\text{sys}}}{400 \text{ K}} \right] \sqrt{\frac{1 \text{ kHz}}{\Delta \nu} \frac{1 \text{ week}}{t_{\text{int}}}}_{\text{Furlanetto \& Loeb 02}}$$

high-z radio-loud quasars: expectations Haiman+ 04

(200 all-sky)

GRBs as background radio source normal GRB afterglows

sub-GHz afterglow flux strongly suppressed by sync. self absorption

-> high-res. spectroscopy difficult

(even though continuum detectable by SKA)

c.f. SI, Omukai, Ciardi 07 also Ioka, Meszaros 04

Pop III stars -> GRBs? expectations

- 通常のGRBと異なりH/He外層 を保持したまま爆発
- 光度は通常のGRBと大差ない $L_{iso} \sim 10^{53} - 10^{54} \text{ erg/s}$ が外層からBHへ降着する質量 が大きく(数10-1000M₀)継続時間が長い T₀~<10⁴ s -> 厚いH/He層でもジェットが

貫通できる

- -> promptは暗くSwiftなどでは trigger UICSN accretion rate (M_{sun}/s)
- -> 総エネルギーはでかい $E_{iso} \sim 10^{54} - 10^{57} \text{ erg}$ 残光が各波長で明るい

Komissarov & Barkov 10 Meszaros & Rees 10 Toma, Sakamoto & Meszaros 10 Suwa & Ioka 10, Nagakura+ 11, Nakauchi+ 12

mass of Pop III stars?

注: 例え40 solarでもH/He層を降着 してE_{iso}>~10⁵⁵ ergはありかも

注: 例え40 solarでもH/He層を降着 してE_{iso}>~10⁵⁵ ergはありかも

GRB afterglows: forward+reverse shock emission

1 wk

SI+ 07

16

18

E=1053 erg, n=1 cm-3

 $\Gamma_0 = 100$, T=100 s

12

10

 $\theta_i=0.1, \epsilon_e=0.1, \epsilon_B=0.01, p=2.2$

log v [Hz]

14

-28

-30

Sari+ 98, 99, Sari & Piran 99 Panaitescu & Kumar 00,01,02 Kobayashi 00... parameters: $E=10^{53}-10^{57} \text{ erg}$ $T_0 = 100 - 10000 \text{ s}$ $n_{ext} = (0.1-)1 \text{ cm}^{-3}$ $\theta_i = 0.1, \epsilon_{e,f} = 0.1, e_{B,f} = 0.01$ $\Gamma_0 = 300, \epsilon_{e,r} = 0.1, e_{B,r} = 0.01$

ultrarelativistic outflow

+ external medium ->

decelerating shock ->

+synchrotron emission

radio-IR-opt-X afterglow

optical flash, radio flare

e acceleration

forward shock:

reverse shock:

- forward shock成分はEにほぼ比例して明るい~1-10mJy @>10GHz
- HD吸収線観測によりよい >~mJy @100GHz up to t~100 days!
- reverse shock成分は相対的にマイナー

- forward shock成分 ~<1Jy! @>10GHz 既存の変動天体探査ですでに制限?(要チェック) - reverse shock成分は完全にsubdominant

Pop III GRB afterglow: $E=10^{57}$ erg, $T_0=10000$ s, z=2021cm absorption? $n_{ext}=0.1$ cm⁻³, $\theta_i=0.3$

Pop III GRB rates

adapted from Liu, SI, Wang & Aharonian, in prep.

first supermassive black holes

 $\begin{array}{l} E \sim L_{Edd} \ t_{Sal} \\ \sim few \ x10^{58} \ erg \\ for \ M_{BH} \sim 10^6 \ M_{sol} \end{array}$

early, gas-rich environment
-> ubiquitous blastwave formation
+ radio emission??

10 10¹⁰ 10^{9} $M_{\rm BH} \, [\,{
m M}_\odot\,]$ 10⁸ 10⁷ Marziani+11 10^{6} 2 З 5 6 7 4 8 Z

Johnson+ 11

probing ionized IGM with radio dispersion SI 04 Ioka 03

unID extragalactic radio burst

Parkes multi-beam pulsar survey

 $S_{v} \sim 30 \text{ Jy } @1.4\text{GHz!}$ $\Delta t \sim 5\text{ms}$

DM=375 pc cm⁻³ >>DM_{Gal} -> D~0.5 Gpc (z~0.1) Lorimer+ Science 07

-> LOFAR, SKA

fast radio bursts: future expectations

also Lorimer+ 13, Trott+ 13

Hassall+13

- 21cm forest: 21cm emissionと相補的な 宇宙黎明期・再電離期・宇宙論のプローブ まだ研究の余地あり!
- 背景電波光源:quasar? Pop III GRB? first SMBH?? 不定性大きいがそれ自体おもしろい研究課題
- fast radio bursts: 正体不明の新種突発電波源 redshiftが測定できるようになれば電離ガスの ユニークなプローブ