電波分散および21cm吸収線系 に基づく観測的宇宙論 井上進(理研) 共同研究者の皆さん

outline

- 1.21cm forest
- 2. high-z radio sources for 21cm forest studies
- 3. radio dispersion of FRBs and cosmic reionization
- 4. radio dispersion of FRBs and small-scale power spectrum

21cm forest (absorption line systems) - significant before cosmic reionization z>6 proton electron - strong signal from minihalos (M<10⁸ M_{Θ}) 1420 MHz 10s of narrow lines ($dv \sim \text{few kHz}$) out to z > 10 $\lambda = 21 \text{ cm}$ - sensitive to reionization details Furlanetto & Loeb 02 absorber abundance z = 100.99 10² =8 0.98 z=6Minihalos $J_{-21} = 1$ $J_{-21} = 0$ 0.97 **Transmission** Heated IGM 101 $dN(>\tau_0)/dz$ 0.99 0.98 $J_{-21} = 1$ 0.97 Relativ Disks 0.99 10^{-1} 0.98 mock spectra $J_{-21} = 10$ 0.97 $also^{10^{-2}}$ 156 162 154 158 160 0.1 ν (MHz) Carilli+ 02, Furlanetto $^{\tau_0}$ 06, Xu+ 09, 11, Meiksin 11, Mack & Wyithe 12,

Vasiliev+ 12, Ciardi+ 13,15, Ewall-Wice+ 14, Semelin 15...

21cm forest in GRBs

Ciardi, SI+15

marginally detectable by LOFAR detection feasible by SKA1 IF Pop III GRB energetic

statistical detection of 21cm absorption in stacked spectra of high-z sources Koopmans, Ciardi, SI,Mellema, in prep.

SKA-low, 1000 hr per 5MHz bandwidth detectable for k~<10 cMpc⁻¹ at z~7-11 50 sources x 10mJy, 500 sources x 3mJy

3 mJy, 500 source(s) 10 mJy, 50 source(s) 30 mJy, 5 source(s) 8.5 10 7.5 P_{*}(k) [cMpc] P (k) [cMpc] (k) [cMpc 10⁻⁶ 6.5 10 Observed Observe Observed Noise Noise Noise 5.5 10⁰ 10¹ 10^{-1} 10^{2} 10⁰ 10⁰ 10⁻¹ 10¹ 10² 10⁻¹ 10¹ 10 k (cMpc⁻¹) k (cMpc⁻¹) k (cMpc⁻¹)

optical depth power spectra of sources at z=9

Figure 1. Shown are the stacked and renormalized power-spectra at z = 9 as function of source flux-density and number of sources in 1000 hrs of integration for a bandwidth of 5 MHz and 2kHz spectral channels. From top to bottom the source flux increases, but the number of sources decreases. The left panels show the source power-spectra (blue) and calibrator noise power spectra (red), and the constant fit to the latter (the red horizontal lines show the $\pm 1-\sigma$ range), whereas the right panels show the source power-spectra after subtracting the best-fit constant noise power-spectrum. Over-plotted in cyan are the input power-spectra (thick line) and the sample variance (thin cyan lines) based on the input power spectra spectra and the thermal noise power spectra

background radio source for 21cm forest

required minimum flux at 1.4 GHz rest frame

$$S_{\min} = 10.3 \text{mJy}\left(\frac{S/N}{5}\right) \left(\frac{0.01}{e^{-\tau_{\text{IGM}}} - e^{-\tau}}\right) \left(\frac{5\text{kHz}}{\Delta v}\right)^{1/2} \left(\underbrace{\frac{1000 \text{ m}^2 \text{K}^{-1}}{A/T_{\text{sys}}}}_{\text{SKA1 (x4 for SKA2)}}\right) \left(\frac{1000 \text{ hr}}{t_{\text{int}}}\right)^{1/2}$$

Y. Inoue, SI et al. in prep.

young radio galaxies

compact steep spectrum (CSS) sources GHz peaked spectrum (GPS) sources

young radio galaxies at high redshift

Afonso+ 15

compact steep spectrum (CSS) sources

young radio galaxies at high redshift

Afonso+ 15

GHz peaked spectrum (GPS) sources

fast radio bursts (FRBs)

new class of radio transients

- ms duration
- high dispersion measure -> most likely cosmological inferred z~0.2-1.3 (up to z~2.1~3.1!) one case clearly confirmed (FRB 121102, z=0.193)
- very frequent: ~<10000/sky/day</pre>
- extreme brightness temp.-> coherent
- multiple subclasses?
 - 1 repeating, rest non-repeating (so far)
- origin mysterious!

no. of models >> no. of known FRBs

- new cosmological probe of ionized baryons

fast radio bursts (FRBs) and dispersion measureGalactic radio pulsarsFRBs (likely extragalactic)

FRBs: new of	class of tra	ansients	Thornton+ Science 13		
	FRB 110220	FRB 110627	FRB 110703	FRB 120127	
Beam right	22 ^h 34 ^m	21 ^h 03 ^m	23 ^h 30 ^m	23 ^h 15 ^m	-
Beam declination (12000)	-12 <i>°</i> 24′	-44° 44′	–02° 52′	–18° 25′	
Galactic latitude, <i>b</i> (°)	-54.7	-41.7	-59.0	-66.2	
Galactic longitude, <i>l</i> (°)	+50.8	+355.8	+81.0	+49.2	
UTC (dd/mm/yyyy	20/02/2011	27/06/2011	03/07/2011	27/01/2012	
hh:mm:ss.sss)	01:55:48.957	21:33:17.474	18:59:40.591	08:11:21.723	DM measured
DM (cm ^{-3} pc)	944.38 ± 0.05	$\textbf{723.0} \pm \textbf{0.3}$	$\textbf{1103.6} \pm \textbf{0.7}$	553.3 ± 0.3	to <0.1%
DM _E (cm ⁻³ pc)	910	677	1072	521	
Redshift, z (DM _{Host} = $100 \text{ cm}^{-3} \text{ pc}$)	0.81	0.61	0.96	0.45	accuracy
Co-moving distance, <i>D</i> (Gpc) at <i>z</i>	2.8	2.2	3.2	1.7	main
Dispersion index, α	-2.003 ± 0.006	_	-2.000 ± 0.006	_	uncertainty.
Scattering index, β	$-4.0~\pm~0.4$	_	_	_	
Observed width	$\textbf{5.6} \pm \textbf{0.1}$	<1.4	<4.3	<1.1	host galaxy
at 1.3 GHz, <i>W</i> (ms)					contribution
SNR	49	11	16	11	
Minimum peak flux density S _v (Jy)	1.3	0.4	0.5	0.5	
Fluence at 1.3 GHz,	8.0	0.7	1.8	0.6	
$S_{\rm v}D^2$ (× 10 ¹² Jy kpc ²)	10.2	1.9	5.1	1.4	
Energy released, E (J)	~10 ³⁹	~10 ³⁷	~10 ³⁸	~10 ³⁷	

need independent redshift for cosmological use 1. arcsec localization -> host galaxy ID + z measurement 2. 21cm absorption by host galaxy Macquart+ 15, Margalit+ 15

probing ionized IGM with radio dispersion SI 04 Ioka 03

SKA detectability of high-z FRBs (IF they exist)

revival of quasar dominant reionization?

implies extended He reionization

HeII Gunn-Peterson effect

Worseck+16

evidence of extended He reionization

```
ionization energy:
HeI – 24.6 eV
near-simultaneous with
H reionization (massive stars?)
HeII – 54.4 eV quasars only!
```

quasar contribution to reionization

Madau & Haardt 15, Yoshiura et al. 16 D'Aloisio et al. 16...

 $\Gamma_{PI} / 10^{-12} \, {\rm s}^{-1}$

10⁻

Mitra, Choudhury & Ferrara 16 HeII GP strongly constrain quasar contribution

without Hell data with Hell data

MH15

 $\beta = -0.27$

 $\beta = -0.0$

25.5

Mitra+16 model without HeII GP constraint

Mitra+16 model without HeII GP constraint

Mitra+16 model with HeII GP constraint

Mitra+16 model with HeII GP constraint

FRBs as probe of small scale power spectrum (warm dark matter and/or small-scale feedback)

lines of sight out to $z\sim1$ intersect large number of $\sim10^{10}$ M_{sun} halos -> variance of DM sensitive to abundance and baryon distribution of $\sim10^{10}$ M_{sun} halos

dispersion measure: mean and variance

prospects for probing small-scale feedback prospects for cross correlations with galaxy surveys...

summary

- 21cm forest: unique, valuable probe of cosmic reionization, nonstandard physics new approach of statistical detection via stacking of moderate sources
- background sources: young radio galaxies (CSS/GPS), blazars more promising than GRBs or mature radio galaxies
- fast radio bursts: (potentially) unique, new probe of ionized intergalactic baryons
 - -> cosmic H+He reionization by stars+quasars
 - -> small scale fluctuations, feedback in dwarf galaxies...