21cm-LAE cross-correlationによる 宇宙再電離期の観測可能性の調査

<u>共同研究者</u> 吉浦伸太郎(熊本大学) 高橋慶太郎(熊本大学) 長谷川賢二(名古屋大学) 大内正己(東京大学・宇宙線研)

Ongoing 21cm observation

1/15

MWA(Australia)

LOFAR(Netherland)

PAPER(South Africa)

	MWA	LOFAR	PAPER
frequency	80-300MHz	30-80MHz 120-240MHz	100-200MHz
frequency resolution	~40kHz	~0.8kHz	~97.6kHz
angular resolution	~2arcmin	~2arcmin	~0.3deg
field of view(FoV)	field of view(FoV) ~20×20deg^2		~1×1deg^2

Future 21cm observation

SKA1-Low(Australia)

frequency	50-350MHz	
frequency resolution	~1kHz	
angular resolution	~1arcmin	
field of view	>4×4deg^2	
maximum base line length	~700m	

Problem of 21 cm-line observation

3/15

The detection of 21cm signal is very challenging! \rightarrow We focused on the correlation with 21cm and galaxy.

Image of the cross-correlation

4/15

Galaxies reside in ionized regions. No galaxy regions are neutral.

21cm-galaxy cross-correlation

$$\left\langle \hat{\delta}_{21}(\mathbf{k}_1) \hat{\delta}_{\text{gal}}(\mathbf{k}_2) \right\rangle \equiv (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2) \frac{P_{21,\text{gal}}(\mathbf{k}_1)}{\text{cross-power spectrum}},$$

We perform both 21cm observation and galaxy survey.

21cm observation $\cdots \delta_{21} = \delta_{21 sig} + \delta_{21 noise} + \delta_{21 FG}$ galaxy survey $\cdots \delta_{gal} = \delta_{gal sig} + \delta_{gal noise}$

$$egin{aligned} &\langle \delta_{21} \delta_{\mathrm{gal}}
angle = \langle \delta_{21\mathrm{sig}} \delta_{\mathrm{gal sig}}
angle + \cdots + \langle \underline{\delta_{21\mathrm{FG}} \delta_{\mathrm{gal sig}}}
angle + \langle \underline{\delta_{21\mathrm{FG}} \delta_{\mathrm{gal noise}}}
angle &\sim 0 &\sim 0 &\sim 0 \end{aligned}$$

21cm signal is correlated with galaxy distribution. FG in 21cm is non-correlated with galaxy survey. \rightarrow We expect the detection of 21cm signal.

Lyman-α emitter(LAE)

- high-z galaxy bright in Lyman α -line
- one of the ionizing sources
- narrow band survey by HSC @z=6.6, 7.3
- Ultra Deep, Deep field \rightarrow <u>2D cross-correlation</u>
- +PFS $\rightarrow 3D$ cross-correlation $\Delta z \sim 0.0007$

©<u>Check qualitative feature of cross-spectrum</u> <u>under our realistic IGM simulation</u>

→ Hasegawa et al. 2016(1603.01961)

© Detectability of 2D and 3D cross-spectrum

- $\Rightarrow \cdot$ Comparison ultra deep with deep field
 - necessity of PFS

 $\Delta z \sim 0.1$

LAE modeling

Layer	Area	# of	Filters & Depth	Comoving volume	Key Science
	$[\deg^2]$	HSC fields		$[h^{-3}\mathrm{Gpc}^3]$	
Wide	1400	916	$grizy \ (r \simeq 26)$	$\sim 4.4 (z < 2)$	WL cosmology, $z \sim 1$ gals, clusters
Deep	27	15	$grizy + 3$ NBs $(r \simeq 27)$	$\sim 0.5 (1 < z < 5)$	$z \lesssim 2$ gals, reionization, WL calib.
Ultradeep	3.5	2	$grizy + 3$ NBs $(r \simeq 28)$	$\sim 0.07 (2 < z < 7)$	$z \gtrsim 2$ gals, reionization, SNeIa

Table 1: Summary of HSC-Wide, Deep and Ultradeep layers

Table 6: LAE and LAB Samples

narrow-band	NB387	$NB816^a$	$NB921^a$	$NB101^a$
redshift	2.18 ± 0.02	5.71 ± 0.05	6.57 ± 0.05	7.30 ± 0.04
N_{UD}^{b}		3.9k(60)	1.7k(30)	39~(0)
$N^b_{ m D}$	9.0k~(730)	14k (360)	5.5k~(100)	—
$V_{\rm UD}^c$	_	1.2	1.2	0.79
$V^c_{ m D}$	6.0	9.6	9.8	—
$L(Ly\alpha)^d_{UD}$	_	1.5	2.5	6.8
$L({ m Ly}lpha)_{ m D}^d$	2.7	2.9	4.1	—
science ^e	LA	LA, CR	LA, CR	LA, CR

Notes $-^{a)}$ We will use these narrow-band data down to the 4σ limits, following the convention in the literature. ^{b)}Expected number of LAEs, with numbers of LABs in parentheses, in each redshift slice. ^{c)}The comoving volume of each redshift slice in units of $10^{6}(h^{-1}\text{Mpc})^{3}$. ^{d)}Limiting Ly α luminosity in units of 10^{42} erg s⁻¹. ^{e)}Key science cases. LA: evolution of LAEs and LABs (Section 5.2), CR: cosmic reionization (Section 5.4).

We could confirm the basic feature in previous study under our realistic simulations.

Detectability

Furlanetto & Lidz(2007)

$$\begin{split} \sigma_B^2(k,\mu) &= \operatorname{var}\left[P_{21}(k,\mu)\right] \\ &= \left[\frac{P_{21}(k,\mu) + \frac{T_{\mathrm{sys}}^2}{T_0^2} \frac{1}{Bt_{\mathrm{int}}} \frac{D^2 \Delta D}{n(k_\perp)} \left(\frac{\lambda^2}{A_e}\right)^2 \right]^2, \\ &\text{sample variance} \quad \text{thermal noise} \\ \sigma_C^2(k,\mu) &= \operatorname{var}\left[P_{\mathrm{gal}}(k,\mu)\right] \\ &= \left[P_{\mathrm{gal}}(k,\mu) + n_{\mathrm{gal}}^{-1} e^{k_\parallel^2 \sigma_\chi^2} \right]^2. \\ &\text{sample variance} \quad \text{shot noise, redshift error} \\ &\frac{1}{\sigma_A^2(k)} = \sum_{\mu} \frac{\epsilon k^3 V_{\mathrm{survey}}}{4\pi^2} \frac{\Delta \mu}{\sigma_A^2(k,\mu)}. \quad : \text{variance} \quad \text{orded} \end{split}$$

: variance on cross-spectrum

 μk

MWA-ultra deep

MWA : 1000h, 256tiles 10/15ultra deep : 3.5deg^2, $\sigma_z=0.1(=\Delta z)$ ultra deep+PFS : 3.5deg^2, $\sigma_z=0.0007$

Depending on sample variance, detectable at large scale@z6.6 red : signal blue : error(ultra deep+PFS) black : error(ultra deep)

SKA1-ultra deep

SKA1 : 1000h, 512tiles 11/15ultra deep : 3.5deg^2, $\sigma_z=0.1(=\Delta z)$ ultra deep+PFS : 3.5deg^2, $\sigma_z=0.0007$

detectable on mid scale@z7.3 PFS is powerful on small scale. red : signal blue : error(ultra deep+PFS) black : error(ultra deep)

12/15

%deep:27deg^2

MWA-deep(z=6.6)

MWA-ultra deep(z=6.6)

In deep we can detect the signal on large scale. \rightarrow Deep is advantageous.

red : signal blue : error(deep+PFS) black : error(deep)

13/15

%deep:27deg^2

SKA1-deep(z=6.6)

SKA1-ultra deep(z=6.6)

We are likely to see turnover.

red : signal blue : error(deep+PFS) black : error(deep)

14/15 Comparison of models on MWA-deep(z=6.6)

 \cdot mid model(f_HI=8.2×10^-3)

Xate model ... emissivity/1.5

red : signal blue : error(deep+PFS) black : error(deep)

late model(f_HI=0.11)

<u>Summary</u>

- Cross-correlation reduces foreground problem.
- We confirm qualitative feature of cross-spectrum in our realistic simulation.
- Deep field is advantageous than ultra deep in detection.
 → Survey volume is key to the detection.
 MWA-deep has ability to detect the signal on large scale.
- PFS enhances SKA's ability.
 PFS allows us to detect on small scale.

Back up

error budget

$$\sigma_A^2 = \frac{1}{2} [P_{21,\text{gal}}^2 + (P_{21} + \sigma_N)(P_{\text{gal}} + \sigma_g)]$$

= $\frac{1}{2} [P_{21,\text{gal}}^2 + P_{21}P_{\text{gal}} + P_{21}\sigma_g + \sigma_N P_{\text{gal}} + \sigma_N \sigma_g]$

 σ_N : thermal noise

 σ_g : shot noise, z error

2D cross-power spectrum(z=6.6)

$\Delta z=0.1$ ~40Mpc

MWA-Deep(2D)

MWA-Deep(3D)

